In sub-Saharan Africa, there is considerable spatial and temporal variability in relations between nutrient application and crop yield, due to varying inherent soil nutrients supply, soil moisture, crop management and germplasm. This variability affects fertilizer use efficiency and crop productivity. Therefore, development of decision systems that support formulation and delivery of site-specific fertilizer recommendations is important for increased crop yield and environmental protection.
View Article and Find Full Text PDFFlowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review.
View Article and Find Full Text PDFPost-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation.
View Article and Find Full Text PDFDeveloping crops that are better adapted to abiotic stresses is important for food production in many parts of the world today. Anticipated changes in climate and its variability, particularly extreme temperatures and changes in rainfall, are expected to make crop improvement even more crucial for food production. Here, we review two key biotechnology approaches, molecular breeding and genetic engineering, and their integration with conventional breeding to develop crops that are more tolerant of abiotic stresses.
View Article and Find Full Text PDFDrought affected rice areas are predicted to double by the end of this century, demanding greater tolerance in widely adapted mega-varieties. Progress on incorporating better drought tolerance has been slow due to lack of appropriate phenotyping protocols. Furthermore, existing protocols do not consider the effect of drought and heat interactions, especially during the critical flowering stage, which could lead to false conclusion about drought tolerance.
View Article and Find Full Text PDF