Infection by human astrovirus (HAstV), a small, positive-strand RNA virus, is a major cause of gastroenteritis and has been implicated in an increasing number of severe, sometimes fatal, neurological diseases since 2008. Currently, there are no vaccines or antiviral treatments available to treat HAstV infection. An attractive target for antiviral therapeutics is the viral protease due to its essential functions throughout infection.
View Article and Find Full Text PDFIn eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein.
View Article and Find Full Text PDFU1-70K (snRNP70) serves as an indispensable protein component within the U1 complex, assuming a pivotal role in both constitutive and alternative RNA splicing processes. Notably, U1-70K engages in interactions with SR proteins, instigating the assembly of the spliceosome. This protein undergoes regulation through phosphorylation at multiple sites.
View Article and Find Full Text PDFThe maintenance of human mitochondrial DNA (mtDNA) is critical for proper cellular function as damage to mtDNA, if left unrepaired, can lead to a diverse array of pathologies. Of the pathways identified to participate in DNA repair within the mitochondria, base excision repair (BER) is the most extensively studied. Protein-protein interactions drive the step-by-step coordination required for the successful completion of this pathway and are important for crosstalk with other mitochondrial factors involved in genome maintenance.
View Article and Find Full Text PDFBiology shows many examples of spatially controlled assembly of cells and biomacromolecules into hierarchically organized structures, to which many of the complex biological functions are attributed. While such biological structures have inspired the design of synthetic materials, it is still a great challenge to control the spatial arrangement of individual building blocks when assembling multiple types of components into bulk materials. Here, we report self-assembly of multilayered, ordered protein arrays from mixed populations of virus-like particles (VLPs).
View Article and Find Full Text PDFChikungunya virus (CHIKV) is one of the most pathogenic members of the genus in the family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) is an archetypical member of , viruses with a genome of negative-sense single-stranded RNA (-ssRNA). Like other viruses of this order, VSV encodes a unique polymerase, a complex of viral L (large, the enzymatic component) protein and P (phosphoprotein, a cofactor component). The L protein has a modular layout consisting of a ring-shaped core trailed by three accessory domains and requires an N-terminal segment of P (P N-terminal disordered [P]) to perform polymerase activity.
View Article and Find Full Text PDFDuring the late phase of the HIV-1 replication cycle, the viral Gag polyproteins are targeted to the plasma membrane for assembly. The Gag-membrane interaction is mediated by binding of Gag's N-terminal myristoylated matrix (MA) domain to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P). The viral envelope (Env) glycoprotein is then recruited to the assembly sites and incorporated into budding particles.
View Article and Find Full Text PDFVirus infections are ultimately dependent on a successful viral genome delivery to the host cell. The bacteriophage family Caudovirales evolved specialized machinery that fulfills this function: the portal proteins complex. The complexes are arranged as dodecameric rings and are a structural part of capsids incorporated at a five-fold vertex.
View Article and Find Full Text PDFThe assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays.
View Article and Find Full Text PDFProteins are widely utilized as templates in biomimetic synthesis of gold nanocrystals. However, the role of proteins in mediating the pathways for gold nucleation and growth is not well understood, in part because of the lack of spatial resolution in probing the complicated biomimetic mineralization process. Self-assembled protein cages, with larger size and symmetry, can facilitate in the visualization of both biological and inorganic components.
View Article and Find Full Text PDFThe portal vertex in dsDNA bacteriophage serves as the site for genome encapsidation and release. In several of these viruses, efficient termination of DNA packaging has been shown to be dependent on the density of packaged DNA. The portal protein has been implicated as being part of the sensor that regulates packaging termination through DNA-dependent conformational changes during packaging.
View Article and Find Full Text PDFUracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis.
View Article and Find Full Text PDFUnlabelled: During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose.
View Article and Find Full Text PDFThe host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution.
View Article and Find Full Text PDFThe extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway.
View Article and Find Full Text PDFBacterial viruses of the P22-like family encode a specialized tail needle essential for genome stabilization after DNA packaging and implicated in Gram-negative cell envelope penetration. The atomic structure of P22 tail needle (gp26) crystallized at acidic pH reveals a slender fiber containing an N-terminal "trimer of hairpins" tip. Although the length and composition of tail needles vary significantly in Podoviridae, unexpectedly, the amino acid sequence of the N-terminal tip is exceptionally conserved in more than 200 genomes of P22-like phages and prophages.
View Article and Find Full Text PDFAnalytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets.
View Article and Find Full Text PDFTwo- and three-dimensional assembly of nanoparticles has generated significant interest because these higher order structures could exhibit collective behaviors/properties beyond those of the individual nanoparticles. Highly specific interactions between molecules, which biology exploits to regulate molecular assemblies such as DNA hybridization, often provide inspiration for the construction of higher order materials using bottom-up approaches. In this study, higher order assembly of virus-like particles (VLPs) derived from the bacteriophage P22 is demonstrated by using a small adaptor protein, Dec, which binds to symmetry specific sites on the P22 capsid.
View Article and Find Full Text PDFBiochim Biophys Acta
May 2015
During infection, human immunodeficiency virus type 1 (HIV-1) interacts with the cellular host factor cyclophilin A (CypA) through residues 85-93 of the N-terminal domain of HIV-1's capsid protein (CA). The role of the CA:CypA interaction is still unclear. Previous studies showed that a CypA-binding loop mutant, Δ87-97, has increased ability to assemble in vitro.
View Article and Find Full Text PDFBiological organisms have evolved tremendous control over the synthesis of inorganic materials in aqueous solutions at standard conditions. Such control over material properties is difficult to achieve with current synthesis strategies. Biotemplated synthesis of materials has been demonstrated to be efficient at facilitating the formation of various inorganic species.
View Article and Find Full Text PDFPlasmonic photocatalytic nanostructures have been fabricated under mild conditions (room temperature aqueous solution) using genetically engineered bacteriophage P22 virus-like particles (VLP) as a nano-platform. The photodegradation of methylene blue by CdS photocatalyst confined inside VLP can be significantly enhanced by the controlled deposition of gold nanoparticles on the outer shell of VLP-CdS.
View Article and Find Full Text PDFBacteriophage P22 has long been considered a hallmark model for virus assembly and maturation. Repurposing of P22 and other similar virus structures for nanotechnology and nanomedicine has reinvigorated the need to further understand the protein-protein interactions that allow for the assembly, as well as the conformational shifts required for maturation. In this work, gp5, the major coat structural protein of P22, has been manipulated in order to examine the mutational effects on procapsid stability and maturation.
View Article and Find Full Text PDF