Publications by authors named "Peter Pimpl"

Receptor-mediated transport of soluble proteins is nature's key to empowering eukaryotic cells to access a plethora of macromolecules, either by direct accumulation or as products from resulting biochemical pathways. The transport efficiency of these mechanisms results from the receptor's capability to capture, transport, and release ligands on the one hand and the cycling ability that allows for performing multiple rounds of ligand transport on the other. However, the plant VACUOLAR SORTING RECEPTOR (VSR) protein family is diverse, and their ligand-specificity and bidirectional trafficking routes and transport mechanisms remain highly controversial.

View Article and Find Full Text PDF

In eukaryotes, GTP-bound ARF GTPases promote intracellular membrane traffic by mediating the recruitment of coat proteins, which in turn sort cargo proteins into the forming membrane vesicles. Mammals employ several classes of ARF GTPases which are activated by different ARF guanine-nucleotide exchange factors (ARF-GEFs). In contrast, flowering plants only encode evolutionarily conserved ARF1 GTPases (class I) but not the other classes II and III known from mammals, as suggested by phylogenetic analysis of ARF family members across the five major clades of eukaryotes.

View Article and Find Full Text PDF

Protein degradation in lytic compartments is crucial for eukaryotic cells. At the heart of this process, vacuolar sorting receptors (VSRs) bind soluble hydrolases in the secretory pathway and release them into the vacuolar route. Sorting efficiency is suggested to result from receptor recycling.

View Article and Find Full Text PDF

Over the past few decades, quantitative protein transport analyses have been used to elucidate the sorting and transport of proteins in the endomembrane system of plants. Here, we have applied our knowledge about transport routes and the corresponding sorting signals to establish an in vivo system for testing specific interactions between soluble proteins.Here, we describe the use of quantitative protein transport assays in tobacco mesophyll protoplasts to test for interactions occurring between a GFP-binding nanobody and its GFP epitope.

View Article and Find Full Text PDF

Combinations of multiple fluorescent fusion proteins are commonly generated and used for colocalization studies in live cell imaging but also biochemical analysis of protein-protein interactions by co-immunoprecipitation in vitro. Advanced microscopy techniques like Förster resonance energy transfer through fluorescence lifetime imaging microscopy (FRET/FLIM) nowadays enable the combination of both approaches. This opens up the possibility to perform a location-specific protein-protein interaction analysis in vivo.

View Article and Find Full Text PDF

The sorting of soluble proteins for degradation in the vacuole is of vital importance in plant cells, and relies on the activity of vacuolar sorting receptors (VSRs). In the plant endomembrane system, VSRs bind vacuole-targeted proteins and facilitate their transport to the vacuole. Where exactly these interactions take place has remained controversial, however.

View Article and Find Full Text PDF

Clathrin-coated vesicles (CCVs) are formed at the plasma membrane and act as vectors for endocytosis. They also assemble at the trans-Golgi network (TGN), but their exact function at this organelle is unclear. Recent studies have examined the effects on vacuolar and secretory protein transport of knockout mutations of the adaptor protein 1 (AP1) μ-adaptin subunit AP1M, but these investigations do not clarify the situation.

View Article and Find Full Text PDF

In this article we challenge the widely accepted view that receptors for soluble vacuolar proteins (VSRs) bind to their ligands at the trans-Golgi network (TGN) and transport this cargo via clathrin-coated vesicles (CCV) to a multivesicular prevacuolar compartment. This notion, which we term the "classical model" for vacuolar protein sorting, further assumes that low pH in the prevacuolar compartment causes VSR-ligand dissociation, resulting in a retromer-mediated retrieval of the VSRs to the TGN. We have carefully evaluated the literature with respect to morphology and function of the compartments involved, localization of key components of the sorting machinery, and conclude that there is little direct evidence in its favour.

View Article and Find Full Text PDF

The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capability of the pHluorins and codon optimized for expression in Arabidopsis.

View Article and Find Full Text PDF

Background: In yeast and mammals, many plasma membrane (PM) proteins destined for degradation are tagged with ubiquitin. These ubiquitinated proteins are internalized into clathrin-coated vesicles and are transported to early endosomal compartments. There, ubiquitinated proteins are sorted by the endosomal sorting complex required for transport (ESCRT) machinery into the intraluminal vesicles of multivesicular endosomes.

View Article and Find Full Text PDF

Retromer is a cytosolic protein complex which binds to post-Golgi organelles involved in the trafficking of proteins to the lytic compartment of the cell. In non-plant organisms, retromer mediates the recycling of acid hydrolase receptors from early endosomal (EE) compartments. In plants, retromer components are required for the targeting of vacuolar storage proteins, and for the recycling of endocytosed PIN proteins.

View Article and Find Full Text PDF

The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation.

View Article and Find Full Text PDF

How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway.

View Article and Find Full Text PDF

The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant-negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome-specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development.

View Article and Find Full Text PDF

Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN).

View Article and Find Full Text PDF

Endosomes are hubs of endomembrane trafficking. They integrate vesicular traffic from different sources such as the plasma membrane or the Golgi apparatus and sort cargo to different destinations such as the vacuole, the plasma membrane or back to the Golgi apparatus. As endomembrane trafficking is largely via transport vesicles, endosomes employ different adaptor proteins and coats to accommodate their multiple functions.

View Article and Find Full Text PDF

Receptor-mediated sorting processes in the secretory pathway of eukaryotic cells rely on mechanisms to recycle the receptors after completion of transport. Based on this principle, plant vacuolar sorting receptors (VSRs) are thought to recycle after dissociating of receptor-ligand complexes in a pre-vacuolar compartment. This recycling is mediated by retromer, a cytosolic coat complex that comprises sorting nexins and a large heterotrimeric subunit.

View Article and Find Full Text PDF

Brefeldin A (BFA) is a useful tool for studying protein trafficking and identifying organelles in the plant secretory and endocytic pathways. At low concentrations (5-10 microg ml(-1)), BFA caused both the Golgi apparatus and trans-Golgi network (TGN), an early endosome (EE) equivalent in plant cells, to form visible aggregates in transgenic tobacco BY-2 cells. Here we show that these BFA-induced aggregates from the Golgi apparatus and TGN are morphologically and functionally distinct in plant cells.

View Article and Find Full Text PDF

Oryzalin is a much-used pre-emergence herbicide which causes microtubules (Mt) to depolymerize. Here, we document that this dinitroaniline herbicide also leads to characteristic changes in the morphology of the endoplasmic reticulum (ER) and Golgi apparatus. These effects, which are reversible upon washing out the herbicide, are already elicited at low concentrations (2 microM) and become most pronounced at 20 microM.

View Article and Find Full Text PDF

p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the -3, -4 position and a diaromatic motif in the -7, -8 position.

View Article and Find Full Text PDF

Quality control in the endoplasmic reticulum (ER) prevents the arrival of incorrectly or incompletely folded proteins at their final destinations and targets permanently misfolded proteins for degradation. Such proteins have a high affinity for the ER chaperone BiP and are finally degraded via retrograde translocation from the ER lumen back to the cytosol. This ER-associated protein degradation (ERAD) is currently thought to constitute the main disposal route, but there is growing evidence for a vacuolar role in quality control.

View Article and Find Full Text PDF

We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specific inhibition of endoplasmic reticulum export via overexpression of Sec12p or coexpression of a GTP-restricted form of Sar1p inhibits the anterograde transport of either cargo molecule in a similar manner.

View Article and Find Full Text PDF

The function of the secretory pathway is dependent on multiple protein-protein interactions at various stages. Currently, such interactions are mainly studied using physical methods that document direct contact or affinity in vitro. The development of vital fluorescence imaging as well as quantitative protein transport assays opens up the implementation of in vivo approaches which can be used to verify models based on in vitro work.

View Article and Find Full Text PDF