Publications by authors named "Peter Pesl"

Background And Objective: Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps.

View Article and Find Full Text PDF

Background: The Advanced Bolus Calculator for Diabetes (ABC4D) is an insulin bolus dose decision support system based on case-based reasoning (CBR). The system is implemented in a smartphone application to provide personalized and adaptive insulin bolus advice for people with type 1 diabetes. We aimed to assess proof of concept, safety, and feasibility of ABC4D in a free-living environment over 6 weeks.

View Article and Find Full Text PDF

Background: Insulin bolus calculators assist people with Type 1 diabetes (T1D) to calculate the amount of insulin required for meals to achieve optimal glucose levels but lack adaptability and personalization. We have proposed enhancing bolus calculators by the means of case-based reasoning (CBR), an established problem-solving methodology, by individualizing and optimizing insulin therapy for various meal situations. CBR learns from experiences of past similar meals, which are described in cases through a set of parameters (eg, time of meal, alcohol, exercise).

View Article and Find Full Text PDF

Background: The Bio-inspired Artificial Pancreas (BiAP) is a closed-loop insulin delivery system based on a mathematical model of beta-cell physiology and implemented in a microchip within a low-powered handheld device. We aimed to evaluate the safety and efficacy of the BiAP over 24 hours, followed by a substudy assessing the safety of the algorithm without and with partial meal announcement. Changes in lactate and 3-hydroxybutyrate concentrations were investigated for the first time during closed-loop.

View Article and Find Full Text PDF

This paper presents the architecture and initial usability results of an advanced insulin bolus calculator for diabetes (ABC4D), which provides personalized insulin recommendations for people with diabetes by differentiating between various diabetes scenarios and automatically adjusting its parameters over time. The proposed platform comprises two main components: a smartphone-based patient platform allowing manual input of glucose and variables affecting blood glucose levels (e.g.

View Article and Find Full Text PDF

Background And Objective: Insulin bolus calculators are simple decision support software tools incorporated in most commercially available insulin pumps and some capillary blood glucose meters. Although their clinical benefit has been demonstrated, their utilisation has not been widespread and their performance remains suboptimal, mainly because of their lack of flexibility and adaptability. One of the difficulties that people with diabetes, clinicians and carers face when using bolus calculators is having to set parameters and adjust them on a regular basis according to changes in insulin requirements.

View Article and Find Full Text PDF

This paper presents an advanced insulin bolus advisor for people with diabetes on multiple daily injections or insulin pump therapy. The proposed system, which runs on a smartphone, keeps the simplicity of a standard bolus calculator while enhancing its performance by providing more adaptability and flexibility. This is achieved by means of applying a retrospective optimization of the insulin bolus therapy using a novel combination of run-to-run (R2R) that uses intermittent continuous glucose monitoring data, and case-based reasoning (CBR).

View Article and Find Full Text PDF

Background: This study assesses proof of concept and safety of a novel bio-inspired artificial pancreas (BiAP) system in adults with type 1 diabetes during fasting, overnight, and postprandial conditions. In contrast to existing glucose controllers in artificial pancreas systems, the BiAP uses a control algorithm based on a mathematical model of β-cell physiology. The algorithm is implemented on a miniature silicon microchip within a portable hand-held device that interfaces the components of the artificial pancreas.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6pdhjn2e1hftua41csevlba2dgiqnen8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once