Publications by authors named "Peter Perlmann"

There is clear evidence that most antimalarial drugs, while acting through different mechanisms, are associated with parasite growth/development inhibition and eventual parasite death. However, the exact mode of parasite death remains unclear. In the present study, we investigated the ability of various drugs, including two antimalarial drugs (chloroquine and atovaquone), a topoisemerase II inhibitor (etoposide) and a nitric oxide donor (S-nitro-N-acetyl-D, L-penicillamine), to induce apoptosis in a laboratory strain of Plasmodium falciparum.

View Article and Find Full Text PDF

Previous studies identified an allelic variant of the IL4 promoter region (IL4-589T) that appears to enhance the transcriptional activity of IL4, and is associated with increased IgE levels. Total serum IgE levels are elevated in malaria endemic regions, and higher in children with severe malaria. Here, we investigated the relationship of the IL4-589C/T polymorphism with severity of the disease in a case-control study of severe malaria in Burkina Faso, West Africa.

View Article and Find Full Text PDF

Plasmodium falciparum malaria infection induces elevated blood levels of both total immunoglobulin and anti-plasmodial antibodies belonging to different isotypes. We have previously shown that donors living in areas of malaria transmission develop malaria-specific IgE antibodies that are present at highest concentrations in patients with severe disease, suggesting a role for this isotype in malaria pathogenesis. To establish the possible importance of IgE in the course and severity of this disease, we have analyzed a large and homogenous group of African children (age range = 6 months to 15 years) belonging to one ethnic group (Mossi) living in identical epidemiologic conditions in the same urban area (Ougadougo) of Burkina Faso.

View Article and Find Full Text PDF

Malaria remains the major parasitic disease, with 300-500 million new infections each year. This survey covers recent advances in the field of parasite-host interactions, focusing on Plasmodium falciparum, the most virulent of the human parasites. Rapid progress in genomic research is creating a basis for the development of new drugs and vaccines.

View Article and Find Full Text PDF