Background: Long COVID affects millions of people and results in a substantial decrease in quality of life. Previous primary studies and reviews attempted to study the effect of vaccination against long COVID, but these studies varied in the cut-off time of long COVID. We adhered to the WHO's definition of long COVID and conducted a systematic review and meta-analysis on the effect of pre-COVID and post-COVID vaccination on long COVID.
View Article and Find Full Text PDFJingmenviruses are a category of emerging segmented viruses that have garnered global attention in recent years, and are close relatives of the flaviviruses in the Flaviviridae family. One of their genome segments encodes NSP1 homologous to flavivirus NS5. NSP1 comprises both the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRP) modules playing essential roles in viral genome replication and capping.
View Article and Find Full Text PDFTranslocation is one essential step for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) to exert viral replication and transcription. Although cryo-EM structures of SARS-CoV-2 RdRp are available, the molecular mechanisms of dynamic translocation remain elusive. Herein, we constructed a Markov state model based on extensive molecular dynamics simulations to elucidate the translocation dynamics of the SARS-CoV-2 RdRp.
View Article and Find Full Text PDFIn this work, we demonstrate an inexpensive method of prototyping microfluidics using a desktop injection molding machine. A centrifugal microfluidic device with a novel central filling mechanism was developed to demonstrate the technique. We overcame the limitations of desktop machines in replicating microfluidic features by variotherm heating and cooling the mold between 50 °C and 110 °C within two minutes.
View Article and Find Full Text PDFThe relentless evolution of SARS-CoV-2 poses a significant threat to public health, as it adapts to immune pressure from vaccines and natural infections. Gaining insights into potential antigenic changes is critical but challenging due to the vast sequence space. Here, we introduce the Machine Learning-guided Antigenic Evolution Prediction (MLAEP), which combines structure modeling, multi-task learning, and genetic algorithms to predict the viral fitness landscape and explore antigenic evolution via in silico directed evolution.
View Article and Find Full Text PDFObjective: To evaluate the effectiveness of heterologous and homologous covid-19 vaccine regimens with and without boosting in preventing covid-19 related infection, hospital admission, and death.
Design: Living systematic review and network meta-analysis.
Data Sources: World Health Organization covid-19 databases, including 38 sources of published studies and preprints.
Improved diagnostics are needed to manage the ongoing COVID-19 pandemic. In this study, we enhanced the color changes and sensitivity of colorimetric SARS-CoV-2 RT-LAMP assays based on triarylmethane dyes. We determined a mechanism for the color changes and obtained sensitivities of 10 RNA copies per microliter.
View Article and Find Full Text PDFBackground: An optimised standard experimental setup across different hospitals is urgently needed to ensure consistency in nucleic acid test results for SARS-CoV-2 detection. A standard comparison across different nucleic acid tests and their optimal experimental setups is not present. We assessed the performance of three common nucleic acid tests, namely digital PCR (dPCR), quantitative PCR (qPCR), and loop-mediated isothermal amplification (LAMP), to detect SARS-CoV-2 in clinical settings.
View Article and Find Full Text PDFStapled peptides are promising protein-protein interaction (PPI) inhibitors that can increase the binding potency. Different from small-molecule inhibitors in which the binding mainly depends on energetic interactions with their protein targets, the binding of stapled peptides has long been suggested to be benefited from entropy. However, it remains challenging to reveal the molecular features that lead to this entropy gain, which could originate from the stabilization of the stapled peptide in solution or from the increased flexibility of the complex upon binding.
View Article and Find Full Text PDFDuring RNA elongation, the influenza A viral (IAV) RNA-dependent RNA polymerase (RdRp) residues in the active site interact with the triphosphate moiety of nucleoside triphosphate (NTP) for catalysis. The molecular mechanisms by which they control the rate and fidelity of NTP incorporation remain elusive. Here, we demonstrated through enzymology, virology and computational approaches that the R239 and K235 in the PB1 subunit of RdRp are critical to controlling the activity and fidelity of transcription.
View Article and Find Full Text PDFFavipiravir (T-705) has been developed as a potent anti-influenza drug and exhibited a strong inhibition effect against a broad spectrum of RNA viruses. Its active form, ribofuranosyl-triphosphate (T-705-RTP), functions as a competitive substrate for the RNA-dependent RNA polymerase (RdRp) of the influenza A virus (IAV). However, the exact inhibitory mechanisms of T-705 remain elusive and subject to a long-standing debate.
View Article and Find Full Text PDFTo initiate transcription, the holoenzyme (RNA polymerase [RNAP] in complex with σ factor) loads the promoter DNA via the flexible loading gate created by the clamp and β-lobe, yet their roles in DNA loading have not been characterized. We used a quasi-Markov State Model (qMSM) built from extensive molecular dynamics simulations to elucidate the dynamics of holoenzyme's gate opening. We showed that during gate opening, β-lobe oscillates four orders of magnitude faster than the clamp, whose opening depends on the Switch 2's structure.
View Article and Find Full Text PDFTranscription errors can substantially affect metabolic processes in organisms by altering the epigenome and causing misincorporations in mRNA, which is translated into aberrant mutant proteins. Moreover, within eukaryotic genomes there are specific Transcription Error-Enriched genomic Loci (TEELs) which are transcribed by RNA polymerases with significantly higher error rates and hypothesized to have implications in cancer, aging, and diseases such as Down syndrome and Alzheimer's. Therefore, research into transcription errors is of growing importance within the field of genetics.
View Article and Find Full Text PDFCOVID-19 has recently caused a global health crisis and an effective interventional therapy is urgently needed. Remdesivir is one effective inhibitor for SARS-CoV-2 viral RNA replication. It supersedes other NTP analogues because it not only terminates the polymerization activity of RNA-dependent RNA polymerase (RdRp), but also inhibits the proofreading activity of intrinsic exoribonuclease (ExoN).
View Article and Find Full Text PDFFunctional conformational changes of proteins can facilitate numerous biological events in cells. The Markov state model (MSM) built from molecular dynamics simulations provide a powerful approach to study them. We here introduce a protocol that is tailor-made for constructing MSMs to study the functional conformational changes of proteins.
View Article and Find Full Text PDFRNA polymerase transcribes certain genomic loci with higher errors rates. These transcription error-enriched genomic loci (TEELs) have implications in disease. Current deep-sequencing methods cannot distinguish TEELs from post-transcriptional modifications, stochastic transcription errors, and technical noise, impeding efforts to elucidate the mechanisms linking TEELs to disease.
View Article and Find Full Text PDFAn escalating pandemic by the novel SARS-CoV-2 virus is impacting global health and effective therapeutic options are urgently needed. We evaluated the in vitro antiviral effect of compounds that were previously reported to inhibit coronavirus replication and compounds that are currently under evaluation in clinical trials for SARS-CoV-2 patients. We report the antiviral effect of remdesivir, lopinavir, homorringtonine, and emetine against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 23.
View Article and Find Full Text PDFRNA polymerase II (Pol II) utilises the same active site for polymerization and intrinsic cleavage. Pol II proofreads the nascent transcript by its intrinsic nuclease activity to maintain high transcriptional fidelity critical for cell growth and viability. The detailed catalytic mechanism of intrinsic cleavage remains unknown.
View Article and Find Full Text PDFHospital-acquired infection causes many deaths worldwide and calls for the urgent need for antibacterial biomaterials used in clinic that can selectively kill harmful bacteria. The present study rationally designs fusion peptides capable of undergoing 2D self-assembly on the poly(methyl methacrylate) surface to form a smart surface, which can maintain a desirable orientation via electrostatic interactions. The in vitro assay shows that the smart surface can recognize bacteria to exert antibacterial activity and is nontoxic toward mouse bone mesenchymal stem cells.
View Article and Find Full Text PDFBacterium Argonaute (Ago; Ago) is a prokaryotic Ago (pAgo) that acts as the host defense against the uptake and propagation of foreign DNA by catalyzing the DNA cleavage reaction. The Ago active site consists of a plugged-in glutamate finger with two arginine residues (R545 and R486) located symmetrically around it. An interesting challenge is to understand how they can collaboratively facilitate enzymatic catalysis.
View Article and Find Full Text PDFTranscription elongation cycle (TEC) of RNA polymerase II (Pol II) is a process of adding a nucleoside triphosphate to the growing messenger RNA chain. Due to the long timescale events in Pol II TEC, an advanced computational technique, such as Markov State Model (MSM), is needed to provide atomistic mechanism and reaction rates. The combination of MSM and experimental results can be used to build a kinetic network model (KNM) of the whole TEC.
View Article and Find Full Text PDF