Publications by authors named "Peter P Wang"

Article Synopsis
  • The study examines colorectal cancer screening uptake in Canada, focusing on racial and sociodemographic disparities among individuals aged 50-74 years.
  • Findings reveal a national screening rate of 59.8%, with higher participation in provinces like Alberta and Manitoba, while older adults and higher income earners had better screening odds.
  • The results highlight the need to address barriers faced by immigrants and minority groups, particularly in communicating the importance and necessity of CRC screening to improve public health outcomes.
View Article and Find Full Text PDF

Human accelerated regions (HARs) are the fastest-evolving regions of the human genome, and many are hypothesized to function as regulatory elements that drive human-specific gene regulatory programs. We interrogate the in vitro enhancer activity and in vivo epigenetic landscape of more than 3,100 HARs during human neurodevelopment, demonstrating that many HARs appear to act as neurodevelopmental enhancers and that sequence divergence at HARs has largely augmented their neuronal enhancer activity. Furthermore, we demonstrate PPP1R17 to be a putative HAR-regulated gene that has undergone remarkable rewiring of its cell type and developmental expression patterns between non-primates and primates and between non-human primates and humans.

View Article and Find Full Text PDF

Background: Dietary patterns are commonly used in epidemiological research, yet there have been few studies assessing if and how research results may vary across dietary patterns. This study aimed to estimate the risk of mortality/recurrence/metastasis using different dietary patterns and comparison amongst the patterns.

Methods: Dietary patterns were identified by Cluster Analysis (CA), Principal Component Analysis (PCA), Alternate Mediterranean Diet score (altMED), Recommended Food Score (RFS) and Dietary Inflammatory Index (DII) scores using a 169-item food frequency questionnaire.

View Article and Find Full Text PDF

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight.

View Article and Find Full Text PDF

The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans but virtually absent in rodents, called outer radial glia (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype-specific sorting with transcriptome-wide RNA sequencing to identify genes enriched in human ORG, which included targets of the transcription factor neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs.

View Article and Find Full Text PDF

The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor required for normal cortical development and is expressed in cortical progenitor cells.

View Article and Find Full Text PDF