The demand for engineered scaffolds capable of delivering multiple cues to cells continues to grow as the interplay between cell fate with microenvironmental and external cues is revealed. Emphasis has been given to develop stimuli-responsive scaffolds. These scaffolds are designed to sense an external stimulus triggering a specific response (e.
View Article and Find Full Text PDFPoly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach.
View Article and Find Full Text PDFThe partial reduction of pyrroles is not a common practice even though it offers a potential route to pyrroline building blocks, commonly used for synthesis. We have investigated the reduction of 2-acyl-N-sulfonylpyrroles and by varying the hydride source and solvent, achieved a chemoselective reduction, leading to 3-pyrrolines and alkyl pyrroles in high yield.
View Article and Find Full Text PDFIt is remarkable that although auxin was the first growth-promoting plant hormone to be discovered, and although more researchers work on this hormone than on any other, we cannot be definitive about the pathways of auxin synthesis in plants. In 2001, there appeared to be a dramatic development in this field, with the announcement of a new gene, and a new intermediate, purportedly from the tryptamine pathway for converting tryptophan to the main endogenous auxin, indole-3-acetic acid (IAA). Recently, however, we presented evidence challenging the original and subsequent identifications of the intermediate concerned.
View Article and Find Full Text PDFThe tryptamine pathway is one of five proposed pathways for the biosynthesis of indole-3-acetic acid (IAA), the primary auxin in plants. The enzymes AtYUC1 (Arabidopsis thaliana), FZY (Solanum lycopersicum), and ZmYUC (Zea mays) are reported to catalyze the conversion of tryptamine to N-hydroxytryptamine, putatively a rate-limiting step of the tryptamine pathway for IAA biosynthesis. This conclusion was based on in vitro assays followed by mass spectrometry or HPLC analyses.
View Article and Find Full Text PDFIt has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles.
View Article and Find Full Text PDFThe sex pheromone of Mnesampela privata, an endemic pest of Eucalyptus plantations in Australia, was previously identified as a single bioactive compound, (3Z,6Z,9Z)-3,6,9-nonadecatriene (C19 triene). Initial field testing of lures containing 1 mg, 5 mg or 10 mg of C19 triene (>98% purity) caught no or very few male M. privata.
View Article and Find Full Text PDFOne pathway leading to the bioactive auxin, indole-3-acetic acid (IAA), is known as the tryptamine pathway, which is suggested to proceed in the sequence: tryptophan (Trp), tryptamine, N-hydroxytryptamine, indole-3-acetaldoxime, indole-3-acetaldehyde (IAAld), IAA. Recently, this pathway has been characterized by the YUCCA genes in Arabidopsis (Arabidopsis thaliana) and their homologs in other species. YUCCA is thought to be responsible for the conversion of tryptamine to N-hydroxytryptamine.
View Article and Find Full Text PDF