Background: Biology-guided radiotherapy (BgRT) is a novel technology that uses positron emission tomography (PET) data to direct radiotherapy delivery in real-time. BgRT enables the precise delivery of radiation doses based on the PET signals emanating from PET-avid tumors on the fly. In this way, BgRT uniquely utilizes radiotracer uptake as a biological beacon for controlling and adjusting dose delivery in real-time to account for target motion.
View Article and Find Full Text PDFObjectives: In this study, we characterise the imaging-mode performance of the positron emission tomography (PET) subsystem of the RefleXion X1 machine using the NEMA NU-2 2018 standard.
Methods: The X1 machine consists of two symmetrically opposing 90 arcs of PET detectors incorporated into the architecture of a ring-gantry linear accelerator rotating up to 60 RPM. PET emissions from a tumour are detected by the PET detectors and used to guide the delivery of radiation beam.
Purpose: We investigated the feasibility of biology-guided radiotherapy (BgRT), a technique that utilizes real-time positron emission imaging to minimize tumor motion uncertainties, to spare nearby organs at risk.
Methods: Volumetric modulated arc therapy (VMAT), intensity-modulated proton (IMPT) therapy, and BgRT plans were created for a paratracheal node recurrence (case 1; 60 Gy in 10 fractions) and a primary peripheral left upper lobe adenocarcinoma (case 2; 50 Gy in four fractions).
Results: For case 1, BgRT produced lower bronchus V40 values compared to VMAT and IMPT.
This is a summary of the design and concept of the RefleXion X1, a system for biology-guided radiotherapy (BgRT). This system is a multi-modal tomography (PET, fan-beam kVCT, and MVD) treatment machine that utilizes imaging and therapy planes for optimized beam delivery of IMRT, SBRT, SRS, and BgRT radiotherapy regimens. For BgRT delivery specifically, annihilation photons emanating outward from a PET-avid tumor are used to guide the delivery of beamlets of radiation to the tumor at sub-second latency.
View Article and Find Full Text PDFThe emerging biological understanding of metastatic cancer and proof-of-concept clinical trials suggest that debulking all gross disease holds great promise for improving patient outcomes. However, ablation of multiple targets with conventional external beam radiotherapy systems is burdensome, which limits investigation and utilization of complete metastatic ablation in the majority of patients with advanced disease. To overcome this logistical hurdle, technical innovation is necessary.
View Article and Find Full Text PDFMonte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems.
View Article and Find Full Text PDFThe simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics.
View Article and Find Full Text PDFIn this work, a method is presented that can calculate the lower bound of the timing resolution for large scintillation crystals with non-negligible photon transport. Hereby, the timing resolution bound can directly be calculated from Monte Carlo generated arrival times of the scintillation photons. This method extends timing resolution bound calculations based on analytical equations, as crystal geometries can be evaluated that do not have closed form solutions of arrival time distributions.
View Article and Find Full Text PDFObjective: Preoperative lymphoscintigraphy (PLS) combined with intraoperative gamma probe (GP) localization is standard procedure for localizing the sentinel lymph nodes (SLN) in melanoma and breast cancer. In this study, we evaluated the ability of a novel intraoperative handheld gamma camera (IHGC) to image SLNs during surgery.
Methods: The IHGC is a small-field-of-view camera optimized for real-time imaging of lymphatic drainage patterns.
Proc Natl Acad Sci U S A
July 2013
Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as light detection and ranging and positron-emission tomography.
View Article and Find Full Text PDFIEEE Trans Med Imaging
May 2013
Nuclear medicine imaging detectors are commonly multiplexed to reduce the number of readout channels. Because the underlying detector signals have a sparse representation, sparse recovery methods such as compressed sensing may be used to develop new multiplexing schemes. Random methods may be used to create sensing matrices that satisfy the restricted isometry property.
View Article and Find Full Text PDFRadiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment.
View Article and Find Full Text PDFWe investigated the feasibility of designing an Anger-logic PET detector module using large-area high-gain avalanche photodiodes (APDs) for a brain-dedicated PET/MRI system. Using Monte Carlo simulations, we systematically optimized the detector design with regard to the scintillation crystal, optical diffuser, surface treatment, layout of large-area APDs, and signal-to-noise ratio (SNR, defined as the 511 keV photopeak position divided by the standard deviation of noise floor in an energy spectrum) of the APD devices. A detector prototype was built comprising an 8 × 8 array of 2.
View Article and Find Full Text PDFA 1 mm(3) resolution clinical positron emission tomography (PET) system employing 4608 position-sensitive avalanche photodiodes (PSAPDs) is under development. This paper describes a detector multiplexing technique that simplifies the readout electronics and reduces the density of the circuit board design. The multiplexing scheme was validated using a simulation framework that models the PSAPDs and front-end multiplexing circuits to predict the signal-to-noise ratio and flood histogram performance.
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2011
We are developing a dual panel breast-dedicated positron emission tomography (PET) system using LSO scintillators coupled to position sensitive avalanche photodiodes (PSAPD). The charge output is amplified and read using NOVA RENA-3 ASICs. This paper shows that the coincidence timing resolution of the RENA-3 ASIC can be improved using certain list-mode calibrations.
View Article and Find Full Text PDFA new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system.
View Article and Find Full Text PDFIEEE Trans Med Imaging
March 2009
List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections.
View Article and Find Full Text PDFWe have developed a miniature scintillation camera to be used in surgical cancer staging. The availability of such a compact hand-held gamma camera may in certain cases improve localization of the sentinel lymph node and reduce the duration of a surgical breast cancer staging procedure. We have investigated image processing algorithms applied to planar images that may improve node detection capabilities for breast cancer staging.
View Article and Find Full Text PDFWe are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design.
View Article and Find Full Text PDFIEEE Trans Nucl Sci
June 2007
We are using a novel position sensitive avalanche photodiode (PSAPD) for the construction of a high resolution positron emission tomography (PET) camera. Up to now most researchers working with PSAPDs have been using an Anger-like positioning algorithm involving the four corner readout signals of the PSAPD. This algorithm yields a significant non-linear spatial "pin-cushion" distortion in raw crystal positioning histograms.
View Article and Find Full Text PDFWe studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The PET camera under development has two 10x 15 cm(2) plates that are constructed from arrays of I X 1 X 3 mm(3) LSO crystals coupled to novel ultra-thin (<200 Am) silicon position-sensitive avalanche photodiodes (PSAPD). In this design the photodetectors are configured "edge-on" with respect to incoming photons which encounter a minimum of 2 cm thick of LSO with directly measured photon interaction depth.
View Article and Find Full Text PDF