The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds.
View Article and Find Full Text PDFThe Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM).
View Article and Find Full Text PDFDual-energy or K-edge imaging is used to enhance contrast between two or more materials in an object and is routinely realised by acquiring two separate X-ray images each at different X-ray wavelength. On a broadband synchrotron source an imaging system to acquire the two images simultaneously was realised. The single-shot approach allows dual-energy and stereo imaging to be applied to dynamic systems.
View Article and Find Full Text PDFA reliable measurement of beam coherence is important for optimal performance of a number of coherence methods being utilized at third-generation synchrotrons and free-electron lasers. Various approaches have been proposed in the past for determining the source size, and hence the degree of coherence; however they often require complex setups with perfect optics and suffer from undefined uncertainties. We present a robust tool for X-ray source characterization with a full quantitative uncertainty analysis for fast on-the-fly coherence measurements.
View Article and Find Full Text PDFJ Synchrotron Radiat
July 2013
It is shown theoretically that the asymmetric or inclined double-crystal X-ray monochromator may be used for X-ray pulse compression if the pulse is properly chirped. By adjusting the mutual distance of the two asymmetric or inclined crystals it should be possible to achieve even a sub-femtosecond compression of a chirped free-electron laser pulse. The small d-spacing of the crystal enables a more compact scheme compared with the currently used grating compression scheme.
View Article and Find Full Text PDFThe performance of a recently developed full-field X-ray micro-imaging system based on an in-line Bragg magnifier is reported. The system is composed of quasi-channel-cut crystals in combination with a Medipix single-photon-counting detector. A theoretical and experimental study of the imaging performance of the crystals-detector combination and a comparison with a standard indirect detector typically used in high-resolution X-ray imaging schemes are reported.
View Article and Find Full Text PDFTwo crystals with precise parabolic holes were used to demonstrate sagittal beam collimation by means of a diffractive-refractive double-crystal monochromator. A new approach is introduced and beam collimation is demonstrated. Two Si(333) crystals with an asymmetry angle of α = 15° were prepared and arranged in a dispersive position (+,-,-,+).
View Article and Find Full Text PDFJ Synchrotron Radiat
March 2011
A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated.
View Article and Find Full Text PDFDiffractive-refractive optics are x-ray focusing monochromators based on the diffraction on profiled crystal surface. Diffraction on longitudinal parabolic groove machined in crystal surface forms a sagittaly focused synchrotron radiation beam. Such kind of monochromator may be realized as a crystal with parabolic hole, where the beam is diffracted on the inner wall of the hole.
View Article and Find Full Text PDF