Publications by authors named "Peter Nower"

Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D.

View Article and Find Full Text PDF

It is estimated that more than 170 million people are infected with hepatitis C virus (HCV) worldwide. Clinical trials have demonstrated that, for the first time in human history, the potential exists to eradicate a chronic viral disease using combination therapies that contain only direct-acting antiviral agents. HCV non-structural protein 5A (NS5A) is a multifunctional protein required for several stages of the virus replication cycle.

View Article and Find Full Text PDF

A comparison of the daclatasvir (DCV [BMS-790052]) resistance barrier on authentic or hybrid replicons containing NS5A from hepatitis C virus (HCV) genotypes 1 to 6 (GT-1 to -6) was completed using a replicon elimination assay. The data indicated that genotype 1b (GT-1b) has the highest relative resistance barrier and genotype 2a (GT-2a M31) has the lowest. The rank order of resistance barriers to DCV was 1b>4a≥5a>6a≅1a>2a JFH>3a>2a M31.

View Article and Find Full Text PDF

A medicinal chemistry campaign that was conducted to address a potential genotoxic liability associated with an aniline-derived scaffold in a series of HCV NS5A inhibitors with dual GT-1a/-1b inhibitory activity is described. Anilides 3b and 3c were used as vehicles to explore structural modifications that retained antiviral potency while removing the potential for metabolism-based unmasking of the embedded aniline. This effort resulted in the discovery of a highly potent biarylimidazole chemotype that established a potency benchmark in replicon assays, particularly toward HCV GT-1a, a strain with significant clinical importance.

View Article and Find Full Text PDF

The hepatitis C virus NS5A protein is an established and clinically validated target for antiviral intervention by small molecules. Characterizations are presented of compounds identified as potent inhibitors of HCV replication to provide insight into structural elements that interact with the NS5A protein. UV-activated cross linking and affinity isolation was performed with one series to probe the physical interaction between the inhibitors and the NS5A protein expressed in HCV replicon cells.

View Article and Find Full Text PDF

The isoquinolinamide series of HCV NS5A inhibitors exemplified by compounds 2b and 2c provided the first dual genotype-1a/1b (GT-1a/1b) inhibitor class that demonstrated a significant improvement in potency toward GT-1a replicons compared to that of the initial program lead, stilbene 2a. Structure-activity relationship (SAR) studies that uncovered an alternate phenylglycine-based cap series that exhibit further improvements in virology profile, along with some insights into the pharmacophoric elements associated with the GT-1a potency, are described.

View Article and Find Full Text PDF

A 96-well based replicon elimination and colony formation assay is presented for comparing the resistance barrier of the hepatitis C virus (HCV) NS5A replication complex inhibitor daclatasvir (DCV, BMS-790052) on three HCV genotypes (gts) in a proof of concept experimental protocol. The 96-well assay format provides both individual colony as well as population characterization and is readily applicable to other HCV direct-acting antiviral agents (DAAs). The assay provides an assessment of HCV replication levels over a 5log10 range by measuring a luciferase reporter resident in the HCV replicons.

View Article and Find Full Text PDF

A series of symmetrical E-stilbene prolinamides that originated from the library-synthesized lead 3 was studied with respect to HCV genotype 1a (G-1a) and genotype 1b (G-1b) replicon inhibition and selectivity against BVDV and cytotoxicity. SAR emerging from an examination of the prolinamide cap region revealed 11 to be a selective HCV NS5A inhibitor exhibiting submicromolar potency against both G-1a and G-1b replicons. Additional structural refinements resulted in the identification of 30 as a potent, dual G-1a/1b HCV NS5A inhibitor.

View Article and Find Full Text PDF

Daclatasvir (DCV; BMS-790052) is a hepatitis C virus (HCV) NS5A replication complex inhibitor (RCI) with picomolar to low nanomolar potency and broad genotypic coverage in vitro. Viral RNA declines have been observed in the clinic for both alpha interferon-ribavirin (IFN-α-RBV) and IFN-RBV-free regimens that include DCV. Follow-up specimens (up to 6 months) from selected subjects treated with DCV in 14-day monotherapy studies were analyzed for genotype and phenotype.

View Article and Find Full Text PDF

In a recent disclosure, we described the discovery of dimeric, prolinamide-based NS5A replication complex inhibitors exhibiting excellent potency towards an HCV genotype 1b replicon. That disclosure dealt with the SAR exploration of the peripheral region of our lead chemotype, and herein is described the SAR uncovered from a complementary effort that focused on the central core region. From this effort, the contribution of the core region to the overall topology of the pharmacophore, primarily vector orientation and planarity, was determined, with a set of analogs exhibiting <10 nM EC(50) in a genotype 1b replicon assay.

View Article and Find Full Text PDF

In a previous disclosure,(1) we reported the dimerization of an iminothiazolidinone to form 1, a contributor to the observed inhibition of HCV genotype 1b replicon activity. The dimer was isolated via bioassay-guided fractionation experiments and shown to be a potent inhibitor of genotype 1b HCV replication for which resistance mapped to the NS5A protein. The elements responsible for governing HCV inhibitory activity were successfully captured in the structurally simplified stilbene prolinamide 2.

View Article and Find Full Text PDF

Unlabelled: The influence of naturally occurring polymorphisms on the potency of the HCV nonstructural protein 5A (NS5A) replication complex inhibitor, BMS-790052, was investigated by evaluating hybrid replicons in which the entire NS5A coding region of genotype (GT) la and 1b laboratory (lab) strains (H77c and Con1) were replaced with the corresponding regions of specimens collected from 10 GT-1a- and 6 GT-1b-infected subjects. For baseline (BL) specimens, with no previously observed resistance variants identified by population sequencing, the median 50% effective concentration (EC(50) ) values for BMS-790052 were similar for the clinically derived and lab strains. A Q30R variant was observed at viral breakthrough (VBT) in one of the GT-1a-infected subjects.

View Article and Find Full Text PDF

BMS-790052, a first-in-class hepatitis C virus (HCV) replication complex inhibitor, targeting nonstructural protein 5A (NS5A), displays picomolar to nanomolar potency against genotypes 1 to 5. This exceptional potency translated into robust anti-HCV activity in clinical studies with HCV genotype 1-infected subjects. To date, all BMS-790052-associated resistance mutations have mapped to the N-terminal region of NS5A.

View Article and Find Full Text PDF

The antiviral profile of BMS-790052, a potent hepatitis C virus (HCV) replication complex inhibitor targeting nonstructural protein NS5A, is well characterized for HCV genotype-1. Here, we report that BMS-790052 inhibits hybrid replicons containing HCV genotype-4 NS5A genes with 50% effective concentrations (EC(50)s) ranging from 7 to 13 pM. NS5A residue 30 was an important site for BMS-790052-selected resistance in the hybrid replicons.

View Article and Find Full Text PDF

Unlabelled: The NS5A replication complex inhibitor, BMS-790052, inhibits hepatitis C virus (HCV) replication with picomolar potency in preclinical assays. This potency translated in vivo to a substantial antiviral effect in a single-ascending dose study and a 14-day multiple-ascending dose (MAD) monotherapy study. However, HCV RNA remained detectable in genotype 1a-infected patients at the end of the MAD study.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multi-functional protein that is expressed in basally phosphorylated (p56) and in hyperphosphorylated (p58) forms. NS5A phosphorylation has been implicated in regulating multiple aspects of HCV replication. We recently reported the identification of a class of compounds that potently inhibit HCV RNA replication by targeting NS5A.

View Article and Find Full Text PDF

The exceptional in vitro potency of the hepatitis C virus (HCV) NS5A inhibitor BMS-790052 has translated into an in vivo effect in proof-of-concept clinical trials. Although the 50% effective concentration (EC(50)) of the initial lead, the thiazolidinone BMS-824, was ~10 nM in the replicon assay, it underwent transformation to other inhibitory species after incubation in cell culture medium. The biological profile of BMS-824, including the EC(50), the drug concentration required to reduce cell growth by 50% (CC(50)), and the resistance profile, however, remained unchanged, triggering an investigation to identify the biologically active species.

View Article and Find Full Text PDF

The iminothiazolidinone BMS-858 (2) was identified as a specific inhibitor of HCV replication in a genotype 1b replicon assay via a high-throughput screening campaign. A more potent analogue, BMS-824 (18), was used in resistance mapping studies, which revealed that inhibitory activity was related to disrupting the function of the HCV nonstructural protein 5A. Despite the development of coherent and interpretable SAR, it was subsequently discovered that in DMSO 18 underwent an oxidation and structural rearrangement to afford the thiohydantoin 47, a compound with reduced HCV inhibitory activity.

View Article and Find Full Text PDF

Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was approximately 5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses.

View Article and Find Full Text PDF

The hepatitis C virus (HCV) replicon is a unique system for the development of a high-throughput screen (HTS), since the analysis of inhibitors requires the quantification of a decrease in a steady-state level of HCV RNA. HCV replicon replication is dependent on host cell factors, and any toxic effects may have a significant impact on HCV replicon replication. Therefore, determining the antiviral specificity of compounds presents a challenge for the identification of specific HCV inhibitors.

View Article and Find Full Text PDF