Publications by authors named "Peter Nordberg"

Antisense oligonucleotide (ASO) therapies hold significant promise in the realm of molecular medicine. By precisely targeting RNA molecules, ASOs offer an approach to modulate gene expression and protein production, making them valuable tools for treating a wide range of genetic and acquired diseases. As the precise intracellular targeting and delivery of ASOs is challenging, strategies for preparing ASO-ligand conjugates are in exceedingly high demand.

View Article and Find Full Text PDF

Detection of nucleic acids within subcellular compartments is key to understanding their function. Determining the intracellular distribution of nucleic acids requires quantitative retention and estimation of their association with different organelles by immunofluorescence microscopy. This is particularly important for the delivery of nucleic acid therapeutics, which depends on endocytic uptake and endosomal escape.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are the most clinically advanced delivery system for RNA-based drugs but have predominantly been investigated for intravenous and intramuscular administration. Subcutaneous administration opens the possibility of patient self-administration and hence long-term chronic treatment that could enable messenger RNA (mRNA) to be used as a novel modality for protein replacement or regenerative therapies. In this study, we show that subcutaneous administration of mRNA formulated within LNPs can result in measurable plasma exposure of a secreted protein.

View Article and Find Full Text PDF

The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators ( S)-1 and ( S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion.

View Article and Find Full Text PDF

A lead generation campaign identified indole-based sPLA-X inhibitors with a promising selectivity profile against other sPLA isoforms. Further optimization of sPLA selectivity and metabolic stability resulted in the design of (-)-, a novel, potent, and selective sPLA-X inhibitor with an exquisite pharmacokinetic profile characterized by high absorption and low clearance, and low toxicological risk. Compound (-)- was tested in an ApoE murine model of atherosclerosis to evaluate the effect of reversible, pharmacological sPLA-X inhibition on atherosclerosis development.

View Article and Find Full Text PDF

In order to assess the potential of sPLA-X as a therapeutic target for atherosclerosis, novel sPLA inhibitors with improved type X selectivity are required. To achieve the objective of identifying such compounds, we embarked on a lead generation effort that resulted in the identification of a novel series of indole-2-carboxamides as selective sPLA2-X inhibitors with excellent potential for further optimization.

View Article and Find Full Text PDF

Expedited structure-based optimization of the initial fragment hit led to the design of ()- (AZD2716) a novel, potent secreted phospholipase A (sPLA) inhibitor with excellent preclinical pharmacokinetic properties across species, clear efficacy, and minimized safety risk. Based on accumulated profiling data, ()- was selected as a clinical candidate for the treatment of coronary artery disease.

View Article and Find Full Text PDF

Our recent adaptation to PET of the method of Fitchard et al. [1], [2], [3] for rigid body registration of CT sinograms enables motion between two temporal frames of PET data to be estimated and corrected prior to reconstruction. This avoids both the computation required by multiple reconstructions and the need to make choices regarding reconstruction methods that influence the images produced, and potentially change the estimated motion.

View Article and Find Full Text PDF

The previously determined crystal structure of the bacterial albumin-binding GA module in complex with human serum albumin (HSA) suggested the possibility of utilizing the complex in the study of ligand binding to HSA. As a continuation of these studies, the crystal structure of the HSA-GA complex with the drug molecule naproxen and the fatty acid decanoate bound to HSA has been determined to a resolution of 2.5 A.

View Article and Find Full Text PDF

The albumin-binding domain, or GA module, of the peptostreptococcal albumin-binding protein expressed in pathogenic strains of Finegoldia magna is believed to be responsible for the virulence and increased growth rate of these strains. Here we present the 1.4A crystal structure of this domain, and compare it with the crystal structure of the GA-albumin complex.

View Article and Find Full Text PDF