Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by liver insufficiency and/or portosystemic shunting. HE is mostly episodic and as such reversible. Hyperammonemia clearly plays a key role in the pathophysiology, but the precise detrimental events in the brain leading to HE remain equivocal.
View Article and Find Full Text PDFVaccines (Basel)
September 2024
PLoS One
September 2022
Background & Aims: Sleep disturbances are related to hepatic encephalopathy and hyperammonaemia in patients with cirrhosis. The circadian rhythm is regulated by light stimulation of the retina via melanopsin-containing ganglion cells. The study aimed to investigate whether induced hyperammonaemia affects the pupillary light response and sleep efficiency in patients with cirrhosis.
View Article and Find Full Text PDFBackground & Aims: Liver failure results in hyperammonaemia, impaired regulation of cerebral microcirculation, encephalopathy, and death. However, the key mediator that alters cerebral microcirculation remains unidentified. In this study we show that topically applied ammonium significantly increases periarteriolar adenosine tone on the brain surface of healthy rats and is associated with a disturbed microcirculation.
View Article and Find Full Text PDFIn acute liver failure (ALF) cerebral oedema and high intracranial pressure (ICP) are potentially deadly complications. Astrocytes cultured in ammonia have shown mitochondrial dysfunction and in rat models of liver failure, de novo lactate production in the brain has been observed and has led to a hypothesis of compromised brain metabolism during ALF. In contrast, normal lactate levels are found in cerebral microdialysate of ALF patients and the oxygen: glucose ratio of cerebral metabolic rates remains normal.
View Article and Find Full Text PDFBackground & Aims: Animal models and human case series of acute liver failure (ALF) suggest moderate hypothermia (MH) to have protective effects against cerebral oedema (CO) development and intracranial hypertension (ICH). However, the optimum temperature for patient management is unknown. In a prospective randomized controlled trial we investigated if maintenance of MH prevented development of ICH in ALF patients at high risk of the complication.
View Article and Find Full Text PDFBackground & Aims: Acute liver failure (ALF) often results in cardiovascular instability, renal failure, brain oedema and death either due to irreversible shock, cerebral herniation or development of multiple organ failure. High-volume plasma exchange (HVP), defined as exchange of 8-12 or 15% of ideal body weight with fresh frozen plasma in case series improves systemic, cerebral and splanchnic parameters.
Methods: In this prospective, randomised, controlled, multicentre trial we randomly assigned 182 patients with ALF to receive either standard medical therapy (SMT; 90 patients) or SMT plus HVP for three days (92 patients).
Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue.
View Article and Find Full Text PDFAim: To investigate the neuroprotective potential of ciclosporin during acute liver failure. We evaluated the effect of intrathecally administered ciclosporin on intracranial pressure, brain water content and aquaporin-4 expression in a rat model with acute hyperammonaemia.
Methods: Twenty-four male Wistar rats with portacaval anastomosis were randomised into four groups receiving ciclosporin or vehicle and ammonia or saline infusion.
Background & Aims: Patients with acute liver failure have a disturbed amino acid metabolism and a compromised oxidative metabolism in the brain. A limited number of clinically neuroprotective interventions are available. This study aimed at assessing the effect of fractionated plasma separation and adsorption (FPSA), an extracorporeal liver support system, on cerebral amino acids and lactate to pyruvate ratio.
View Article and Find Full Text PDFUnlabelled: Intravenous infusion of magnesium sulfate prevents seizures in patients with eclampsia and brain edema after traumatic brain injury. Neuroprotection is achieved by controlling cerebral blood flow (CBF), intracranial pressure, neuronal glutamate release, and aquaporin-4 (Aqp4) expression. These factors are also thought to be involved in the development of brain edema in acute liver failure.
View Article and Find Full Text PDFPurpose Of Review: Acute liver failure (ALF) results in a multitude of serious complications that often lead to multi-organ failure. This brief review focuses on the pathophysiological processes in ALF and how to manage these.
Recent Findings: The clinical presentation in ALF ranges from slightly altered conscious level with profound coagulopathy to coma with a catastrophic failure of multiple organs, including uncontrollable cerebral edema and brain death, which is rarely seen in decompensated cirrhosis.
Background & Aims: The pathogenesis of cerebral edema in acute liver failure is suggested, in in vitro and animal studies, to involve a compromised oxidative metabolism with a decrease in cerebral ATP levels and an increase in purine concentrations. In this study we hypothesize that the cerebral concentrations of hypoxanthine, inosine, and lactate/pyruvate (LP) ratio are increased and correlated in patients with acute liver failure. Furthermore, we expect the purines and L/P ratio to correlate with intracranial pressure (ICP) (positively), and cerebral perfusion pressure (CPP) (negatively).
View Article and Find Full Text PDFAcute liver failure (ALF) is a condition with an unfavourable prognosis. Multiorgan failure and circulatory collapse are frequent causes of death, but cerebral edema and intracranial hypertension (ICH) are also common complications with a high risk of fatal outcome. The underlying pathogenesis has been extensively studied and although the development of cerebral edema and ICH is of a complex and multifactorial nature, it is well established that ammonia plays a pivotal role.
View Article and Find Full Text PDFAim: Hyperammonemia causes brain edema and high intracranial pressure (ICP) in acute liver failure (ALF) by accumulation of glutamine in brain. Since a high-level glutamine may compromise mitochondrial function, the aim of this study was to determine if the lactate-pyruvate ratio is associated with a rise in the glutamine concentration and ICP.
Patients And Methods: In 13 patients with ALF (8F/5M; median age 46 (range 18-66) years) the cerebral extracellular concentrations of glutamine, lactate, and pyruvate were measured by in vivo brain microdialysis together with ICP and cerebral perfusion pressure (CPP).
Aim: To determine the efficacy of tacrolimus on clinical status, histopathological status and biochemical markers in patients with steroid refractory autoimmune hepatitis (AIH).
Methods: Retrospectively, clinical parameters, biochemistry and histology were obtained from patient records.
Results: Nine patients [8 females/1 male, median age 32 (range 16-64) years] were identified to have received tacrolimus for a median duration of 18 (12-37) mo.
Introduction: Focal nodular hyperplasia (FNH) is a benign lesion of the liver and is most commonly seen in women in the reproductive age. This article is a retrospective study of FNH.
Material And Method: Patients with histologically verified FNH were included.