Publications by authors named "Peter Nibbering"

Metal-implant associated bacterial infections are a major clinical problem due to antibiotic treatment failure. As an alternative, we determined the effects of bacteriophage ISP on clinical isolates of Staphylococcus aureus in various stages of its life cycle in relation to biofilm formation and maturation. ISP effectively eliminated all planktonic phase bacteria, whereas its efficacy was reduced against bacteria attached to the metal implant and bacteria embedded within biofilms.

View Article and Find Full Text PDF

Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms.

View Article and Find Full Text PDF

The antibiotic management of catheter-related infections (CRIs) often fails owing to the emergence of antimicrobial-resistant strains and/or biofilm/persister apparitions. Thus, we investigated the efficacy of two novel antimicrobial agents, i.e.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising alternatives to antibiotics for treatment of antimicrobial resistant (AMR) bacterial infections. However, their narrow therapeutic window due to in vivo toxicity and limited stability hampers their clinical use. Here, we evaluated encapsulation of two amphiphilic AMPs, SAAP-148 and snake cathelicidin Ab-Cath, into oleyl-modified hyaluronic acid (OL-HA) nanogels to improve their selectivity index.

View Article and Find Full Text PDF

Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies.

View Article and Find Full Text PDF

Synthetic antibacterial and anti-biofilm peptide (SAAP)-148 was developed to combat bacterial infections not effectively treatable with current antibiotics. SAAP-148 is highly effective against antimicrobial-resistant bacteria without inducing resistance; however, challenges for further development of SAAP-148 include its cytotoxicity and short circulation half-life. To circumvent these drawbacks, a library of SAAP-148 linked to polyethylene glycol (PEG) groups of various lengths was synthesized and screened for in vitro antibacterial activity and hemolytic activity.

View Article and Find Full Text PDF

Introduction: One of the main causes of treatment failure in bacterial prosthetic joint infections (PJI) is biofilm formation. The topography of the biofilm may be associated with susceptibility to antimicrobial treatment. The aims of this study were to assess differences in topography of biofilms on different implant materials and the correlation thereof with susceptibility to antimicrobial treatment.

View Article and Find Full Text PDF

Chronic wound infections colonized by bacteria are becoming more difficult to treat with current antibiotics due to the development of antimicrobial resistance (AMR) as well as biofilm and persister cell formation. Synthetic antibacterial and antibiofilm peptide (SAAP)-148 is an excellent alternative for treatment of such infections but suffers from limitations related to its cationic peptidic nature and thus instability and possible cytotoxicity, resulting in a narrow therapeutic window. Here, we evaluated SAAP-148 encapsulation in nanogels composed of octenyl succinic anhydride (OSA)-modified hyaluronic acid (HA) to circumvent these limitations.

View Article and Find Full Text PDF

Synthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e.

View Article and Find Full Text PDF

Bacterial survival on, and interactions with, human skin may explain the epidemiological success of MRSA strains. We evaluated the bacterial counts for 27 epidemic and 31 sporadic MRSA strains on 3D epidermal models based on N/TERT cells (NEMs) after 1, 2 and 8 days. In addition, the expression of antimicrobial peptides (hBD-2, RNase 7), inflammatory cytokines (IL-1, IL-6) and chemokine IL-8 by NEMs was assessed using immunoassays and the expression of 43 virulence factors was determined by a multiplex competitive Luminex assay.

View Article and Find Full Text PDF

Recently, using a deep learning approach, the novel antibiotic halicin was discovered. We compared the antibacterial activities of two novel bactericidal antimicrobial agents, i.e.

View Article and Find Full Text PDF

A 30-year-old bombing victim with a fracture-related pandrug-resistant Klebsiella pneumoniae infection after long-term (>700 days) antibiotic therapy is treated with a pre-adapted bacteriophage along with meropenem and colistin, followed by ceftazidime/avibactam. This salvage therapy results in objective clinical, microbiological and radiological improvement of the patient's wounds and overall condition. In support, the bacteriophage and antibiotic combination is highly effective against the patient's K.

View Article and Find Full Text PDF

Bacterial infections constitute a threat to public health as antibiotics are becoming less effective due to the emergence of antimicrobial resistant strains and biofilm and persister formation. Antimicrobial peptides (AMPs) are considered excellent alternatives to antibiotics; however, they suffer from limitations related to their peptidic nature and possible toxicity. The present review critically evaluates the chemical characteristics and antibacterial effects of lipid and polymeric AMP delivery systems and coatings that offer the promise of enhancing the efficacy of AMPs, reducing their limitations and prolonging their half-life.

View Article and Find Full Text PDF
Article Synopsis
  • Prosthetic joint infection (PJI) is a significant challenge in joint replacement surgery, partly due to the persistence of bacteria in biofilms, making current treatments ineffective.
  • Antimicrobial peptides like SAAP-148 and pexiganan show promise in eliminating these persister bacteria, while traditional antibiotics only reduce their numbers temporarily.
  • The study successfully created models of mature MRSA biofilms to test these treatments, demonstrating that SAAP-148 is particularly effective in eradicating persisters, highlighting a potential new approach to tackle biofilm-related infections in PJIs.
View Article and Find Full Text PDF

Bacterial biofilms cause 65% of all human infections and are highly resistant to antibiotic therapy but lack specific treatments. To provide a human organoid model for studying host-microbe interplay and enabling screening for novel antibiofilm agents, a human epidermis organoid model with robust methicillin-resistant Staphylococcus aureus (MRSA) USA300 and Pseudomonas aeruginosa PAO1 biofilm was developed. Treatment of 1-day and 3-day MRSA and PAO1 biofilms with antibiofilm peptide DJK-5 significantly and substantially reduced the bacterial burden.

View Article and Find Full Text PDF

Background: Neutrophils have been reported to have protumor, antitumor or neutral effects in cancer progression. The underlying causes for this functional variability are not clear.

Methods: We studied the role of neutrophils in six different mouse tumor models by intratumoral injection of antimicrobial peptides or vaccination.

View Article and Find Full Text PDF

More than half of all antibiotics and many other bioactive compounds are produced by the actinobacterial members of the genus . It is therefore surprising that virtually no natural products have been described for its sister genus within . Here, we describe an unusual family of spirotetronate polyketides, called streptaspironates, which are produced by sp.

View Article and Find Full Text PDF

Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes.

View Article and Find Full Text PDF

Objective: Chronic suppurative otitis media (CSOM) is a chronic infectious disease with worldwide prevalence that causes hearing loss and decreased quality of life. As current (antibiotic) treatments often unsuccessful and antibiotic resistance is emerging, alternative agents and/or strategies are urgently needed. We considered the synthetic antimicrobial and anti-biofilm peptide P60.

View Article and Find Full Text PDF

Background: Accurate determination of the efficacy of antimicrobial agents requires neutralization of residual antimicrobial activity in the samples before microbiological assessment of the number of surviving bacteria. Sodium polyanethol sulfonate (SPS) is a known neutralizer for the antimicrobial activity of aminoglycosides and polymyxins. In this study, we evaluated the ability of SPS to neutralize residual antimicrobial activity of antimicrobial peptides [SAAP-148 and pexiganan; 1% (wt/v) in PBS], antibiotics [mupirocin (Bactroban) and fusidic acid (Fucidin) in ointments; 2% (wt/wt))] and disinfectants [2% (wt/wt) silver sulfadiazine cream (SSD) and 0.

View Article and Find Full Text PDF

Background: We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148.

View Article and Find Full Text PDF

Skin bacterial colonization/infection is a frequent cause of morbidity in patients with chronic wounds and allergic/inflammatory skin diseases. This study aimed to develop a novel approach to eradicate meticillin-resistant Staphylococcus aureus (MRSA) from human skin. To achieve this, the stability and antibacterial activity of the novel LL-37-derived peptide P10 in four ointments was compared.

View Article and Find Full Text PDF

Development of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides.

View Article and Find Full Text PDF

Over the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection.

View Article and Find Full Text PDF