Publications by authors named "Peter Naglic"

Novel low-cost portable spectrophotometers could be an alternative to traditional spectrophotometers and calibrated RGB cameras by offering lower prices and convenient measurements but retaining high colorimetric accuracy. This study evaluated the colorimetric accuracy of low-cost, portable spectrophotometers on the established color calibration target-RAL Design System Plus (RAL+). Four spectrophotometers with a listed price between USD 100-1200 (Nix Spectro 2, Spectro 1 Pro, ColorReader, and Pico) and a smartphone RGB camera were tested on a representative subset of 183 RAL+ colors.

View Article and Find Full Text PDF

Significance: Current open-source Monte Carlo (MC) method implementations for light propagation modeling are many times tedious to build and require third-party licensed software that can often discourage prospective researchers in the biomedical optics community from fully utilizing the light propagation tools. Furthermore, the same drawback also limits rigorous cross-validation of physical quantities estimated by various MC codes.

Aim: Proposal of an open-source tool for light propagation modeling and an easily accessible dataset to encourage fruitful communications amongst researchers and pave the way to a more consistent comparison between the available implementations of the MC method.

View Article and Find Full Text PDF

In this work, we introduce a framework for efficient and accurate Monte Carlo (MC) simulations of spatially resolved reflectance (SRR) acquired by optical fiber probes that account for all the details of the probe tip including reflectivity of the stainless steel and the properties of the epoxy fill and optical fibers. While using full details of the probe tip is essential for accurate MC simulations of SRR, the break-down of the radial symmetry in the detection scheme leads to about two orders of magnitude longer simulation times. The introduced framework mitigates this performance degradation, by an efficient reflectance regression model that maps SRR obtained by fast MC simulations based on a simplified probe tip model to SRR simulated using the full details of the probe tip.

View Article and Find Full Text PDF

In this work, we revise the preparation procedure and conduct an in depth characterization of optical properties for the recently proposed silicone-based tissue-mimicking optical phantoms in the spectral range from 475 to 925 nm. The optical properties are characterized in terms of refractive index and its temperature dependence, absorption and reduced scattering coefficients and scattering phase function related quantifiers. The scattering phase function and related quantifiers of the optical phantoms are first assessed within the framework of the Mie theory by using the measured refractive index of SiliGlass and size distribution of the hollow silica spherical particles that serve as scatterers.

View Article and Find Full Text PDF

Monodisperse polystyrene microspheres are often utilized in optical phantoms since optical properties such as the scattering coefficient and the scattering phase function can be calculated using the Mie theory. However, the calculated values depend on the inherent physical parameters of the microspheres which include the size, refractive index, and solid content. These parameters are often provided only approximately or can be affected by long shelf times.

View Article and Find Full Text PDF

Subdiffusive reflectance captured at short source-detector separations provides increased sensitivity to the scattering phase function and hence allows superficial probing of the tissue ultrastructure. Consequently, estimation of subdiffusive optical parameters has been the subject of many recent studies focusing on lookup-table-based (LUT) inverse models. Since an adequate description of the subdiffusive reflectance requires additional scattering phase function related optical parameters, the LUT inverse models, which grow exponentially with the number of estimated parameters, become excessively large and computationally inefficient.

View Article and Find Full Text PDF

Light propagation in biological tissues is frequently modeled by the Monte Carlo (MC) method, which requires processing of many photon packets to obtain adequate quality of the observed backscattered signal. The computation times further increase for detection schemes with small acceptance angles and hence small fraction of the collected backscattered photon packets. In this paper, we investigate the use of a virtually increased acceptance angle for efficient MC simulation of spatially resolved reflectance and estimation of optical properties by an inverse model.

View Article and Find Full Text PDF

Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance.

View Article and Find Full Text PDF

Estimation of optical properties from subdiffusive reflectance acquired at short source-detector separations is challenging due to the sensitivity to the underlying scattering phase function. In recent studies, a second-order similarity parameter γ has been increasingly used alongside the absorption and reduced scattering coefficients to account for some of the phase function variability. By using Monte Carlo simulations, we show that the influence of the scattering phase function on the subdiffusive reflectance for the biologically relevant variations can be captured sufficiently well by considering γ and a third-order similarity parameter δ.

View Article and Find Full Text PDF

We propose and objectively evaluate an inverse Monte Carlo model for estimation of absorption and reduced scattering coefficients and similarity parameter ? from spatially resolved reflectance (SRR) profiles in the subdiffusive regime. The similarity parameter ? carries additional information on the phase function that governs the angular properties of scattering in turbid media. The SRR profiles at five source-detector separations were acquired with an optical fiber probe.

View Article and Find Full Text PDF

We assess the properties of contact pressure applied by manually operated fiber-optic probes as a function of the operator, probe contact area, and sample stiffness. First, the mechanical properties of human skin sites with different skin structures, thicknesses, and underlying tissues were studied by in vivo indentation tests. According to the obtained results, three different homogeneous silicone skin phantoms were created to encompass the observed range of mechanical properties.

View Article and Find Full Text PDF

Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g.

View Article and Find Full Text PDF

Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g.

View Article and Find Full Text PDF