Ultrafast ultrasound imaging enables the visualization of rapidly changing blood flow dynamics in the chambers of the heart. Singular value decomposition (SVD) filters outperform conventional high pass clutter rejection filters for ultrafast blood flow imaging of small and shallow fields of view (e.g.
View Article and Find Full Text PDFDoppler ultrasound has become a standard method used to diagnose and grade vascular diseases and monitor their progression. Conventional focused-beam color Doppler imaging is routinely used in clinical practice, but suffers from inherent trade-offs between spatial, temporal and velocity resolution. Newer, plane-wave Doppler imaging offers rapid simultaneous acquisition of B-mode, color and spectral Doppler information across large fields of view, making it a potentially useful method for quantitative estimation of blood flow velocities in the clinic.
View Article and Find Full Text PDFQuantitative Doppler ultrasound of the carotid artery has been proposed as an instantaneous surrogate for monitoring rapid changes in left ventricular output. Tracking immediate changes in the arterial Doppler spectrogram has value in acute care settings such as the emergency department, operating room and critical care units. We report a novel, hands-free, continuous-wave Doppler ultrasound patch that adheres to the neck and tracks Doppler blood flow metrics in the common carotid artery using an automated algorithm.
View Article and Find Full Text PDFSubmicron phase-change droplets are an emerging class of ultrasound contrast agent. Compared with microbubbles, their relatively small size and increased stability offer the potential to passively extravasate and accumulate in solid tumors through the enhanced permeability and retention effect. Under exposure to sufficiently powerful ultrasound, these droplets can convert into in situ gas microbubbles and thus be used as an extravascular-specific contrast agent.
View Article and Find Full Text PDFThe present, updated document describes the fourth iteration of recommendations for the hepatic use of contrast-enhanced ultrasound, first initiated in 2004 by the European Federation of Societies for Ultrasound in Medicine and Biology. The previous updated editions of the guidelines reflected changes in the available contrast agents and updated the guidelines not only for hepatic but also for non-hepatic applications. The 2012 guideline requires updating as, previously, the differences in the contrast agents were not precisely described and the differences in contrast phases as well as handling were not clearly indicated.
View Article and Find Full Text PDFThe present, updated document describes the fourth iteration of recommendations for the hepatic use of contrast enhanced ultrasound (CEUS), first initiated in 2004 by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB). The previous updated editions of the guidelines reflected changes in the available contrast agents and updated the guidelines not only for hepatic but also for non-hepatic applications.The 2012 guideline requires updating as previously the differences of the contrast agents were not precisely described and the differences in contrast phases as well as handling were not clearly indicated.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2020
Current methods for in vivo microvascular imaging (<1 mm) are limited by the tradeoffs between the depth of penetration, resolution, and acquisition time. Ultrasound Doppler approaches combined at elevated frequencies (<7.5 MHz) are able to visualize smaller vasculature and, however, are still limited in the segmentation of lower velocity blood flow from moving tissue.
View Article and Find Full Text PDFThe epidemic of increasing fatty liver disease and liver cancer worldwide, and especially in Western society, has given new importance to non-invasive liver imaging. Contrast-enhanced ultrasound (CEUS) using microbubble contrast agents provides unique advantages over computed tomography (CT) and magnetic resonance imaging (MRI), the currently established methods. CEUS provides determination of malignancy and allows excellent differential diagnosis of a focal liver mass, based on arterial phase enhancement patterns and assessment of the timing and intensity of washout.
View Article and Find Full Text PDFMicrobubble contrast agents were introduced more than 25 years ago with the objective of enhancing blood echoes and enabling diagnostic ultrasound to image the microcirculation. Cardiology and oncology waited anxiously for the fulfillment of that objective with one clinical application each: myocardial perfusion, tumor perfusion and angiogenesis imaging. What was necessary though at first was the scientific understanding of microbubble behavior in vivo and the development of imaging technology to deliver the original objective.
View Article and Find Full Text PDFContrast-enhanced ultrasound (CEUS) is a powerful technique for differentiating focal liver lesions (FLLs) without the risks of potential nephrotoxicity or ionizing radiation. In the diagnostic algorithm for FLLs on CEUS, washout is an important feature, as its presence is highly suggestive of malignancy and its characteristics are useful in distinguishing hepatocellular from nonhepatocellular malignancies. Interpreting washout on CEUS requires an understanding that microbubble contrast agents are strictly intravascular, unlike computed tomography or magnetic resonance imaging contrast agents.
View Article and Find Full Text PDFHepatocellular adenoma is a rare benign liver tumor. Predisposing factors include hepatic storage diseases and some genetic conditions. A new histology-based classification has been proposed but to date, the corresponding ultrasound imaging features have not been reported.
View Article and Find Full Text PDFA small population of patients with severe Crohn's disease (CD) exhibit atypical lack of intensity decline on intestinal contrast-enhanced ultrasound. From a retrospective CD cohort examined with contrast-enhanced ultrasound, 104 patients were identified. Twenty study patients with severe active disease exhibited high peak enhancement (>23 dB) and minimal decline.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2018
Three-dimensional contrast-enhanced ultrasound (CEUS) imaging presents a clear advantage over its 2-D counterpart in detecting and characterizing suspicious lesions as it properly surveys the inherent heterogeneity of tumors. However, 3-D CEUS is also slow compared to 2-D CEUS and tends to undersample the microbubble wash-in. This makes it difficult to resolve the feeding vessels, an important oncogenic marker, from the background perfusion cloud.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
August 2018
In this paper, we assess the importance of microbubble shell composition for contrast-enhanced imaging sequences commonly used on clinical scanners. While the gas core dynamics are primarily responsible for the nonlinear harmonic response of microbubbles at diagnostic pressures, it is now understood that the shell rheology plays a dominant role in the nonlinear response of microbubbles subjected to low acoustic pressures. Of particular interest here, acoustic pressures of tens of kilopascal can cause a reversible phase transition of the phospholipid coatings from a stiff elastic organized state to a less stiff disorganized buckled state.
View Article and Find Full Text PDFPhase-shift droplets can be converted by sound from low-echogenicity, liquid-core agents into highly echogenic microbubbles. Many proposed applications in imaging and therapy take advantage of the high spatiotemporal control over this dynamic transition. Although some studies have reported increased circulation time of the droplets compared with microbubbles, few have directly explored the impact of encapsulation on droplet performance.
View Article and Find Full Text PDF"How to perform contrast-enhanced ultrasound (CEUS)" provides general advice on the use of ultrasound contrast agents (UCAs) for clinical decision-making and reviews technical parameters for optimal CEUS performance. CEUS techniques vary between centers, therefore, experts from EFSUMB, WFUMB and from the CEUS LI-RADS working group created a discussion forum to standardize the CEUS examination technique according to published evidence and best personal experience. The goal is to standardise the use and administration of UCAs to facilitate correct diagnoses and ultimately to improve the management and outcomes of patients.
View Article and Find Full Text PDFObjectives: To identify dynamic contrast-enhanced (DCE) imaging parameters from MRI, CT and US that are prognostic and predictive in patients with metastatic renal cell cancer (mRCC) receiving sunitinib.
Methods: Thirty-four patients were monitored by DCE imaging on day 0 and 14 of the first course of sunitinib treatment. Additional scans were performed with DCE-US only (day 7 or 28 and 2 weeks after the treatment break).
IEEE Trans Med Imaging
September 2017
While plane-wave imaging can improve the performance of power Doppler by enabling much longer ensembles than systems using focused beams, the long-ensemble averaging of the zero-lag autocorrelation R(0) estimates does not directly decrease the mean noise level, but only decreases its variance. Spatial variation of the noise due to the time-gain compensation and the received beamforming aperture ultimately limits sensitivity. In this paper, we demonstrate that the performance of power Doppler imaging can be improved by leveraging the higher lags of the autocorrelation [e.
View Article and Find Full Text PDFAccurate characterization of cirrhotic nodules and early diagnosis of hepatocellular carcinoma (HCC) are of vital importance. Currently, computed tomography (CT) and magnetic resonance (MR) imaging are standard modalities for the investigation of new nodules found at surveillance ultrasonography (US). This article describes the successful integration of contrast material-enhanced US into a multimodality approach for diagnosis of HCC and its benefits in this population.
View Article and Find Full Text PDFThe goal of this study was to evaluate the accuracy of a non-invasive C-plane Doppler estimation of pulsatile blood flow in the lower abdominal vessels of a porcine model. Doppler ultrasound measurements from a matrix array transducer system were compared with invasive volume flow measurements made on the same vessels with a surgically implanted ultrasonic transit-time flow probe. For volume flow rates ranging from 60 to 750 mL/min, agreement was very good, with a Pearson correlation coefficient of 0.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2016
While long Doppler ensembles are, in principle, beneficial for velocity estimates, short acoustic pulses must be used in microbubble contrast-enhanced (CE) Doppler to mitigate microbubble destruction. This introduces inherent tradeoffs in velocity estimates with autocorrelators, which are studied here. A model of the autocorrelation function adapted to the microbubble Doppler signal accounting for transit time, the echo frequency uncertainty, and contrast-agent destruction is derived and validated in vitro.
View Article and Find Full Text PDFRecombinant human bone morphogenetic protein 2 (rhBMP-2) is used clinically to enhance implant-mediated bone regeneration. However, there are risks associated with the high rhBMP-2 dose that is required in the implant to mitigate diffusional loss over the therapeutic timespan. On-demand, localized control over delivery of rhBMP-2, days after implantation, would therefore be an attractive solution in the area of bone repair and reconstruction, yet this has posed a significant challenge, with little data to support in vivo efficacy to date.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
January 2017
Continued advances in the field of ultrasound and ultrasound contrast agents have created new approaches to imaging and medical intervention. Phase-shift perfluorocarbon droplets, which can be vaporized by ultrasound energy to transition from the liquid to the vapor state, are one of the most highly researched alternatives to clinical ultrasound contrast agents (i.e.
View Article and Find Full Text PDFPhase-shift perfluorocarbon droplets have been investigated for over 20 years as pre-clinical ultrasound contrast agents with distinctive advantages in imaging and therapy. A number of formulation strategies exist, each with inherent advantages and limitations. In this note, we demonstrate a unique opportunity: that phase-shift droplets can be generated directly from commercially available microbubbles.
View Article and Find Full Text PDF