IEEE Trans Pattern Anal Mach Intell
December 2013
We present a novel approach to localizing parts in images of human faces. The approach combines the output of local detectors with a nonparametric set of global models for the part locations based on over 1,000 hand-labeled exemplar images. By assuming that the global models generate the part locations as hidden variables, we derive a Bayesian objective function.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
March 2013
We propose a new method named compressive structured light for recovering inhomogeneous participating media. Whereas conventional structured light methods emit coded light patterns onto the surface of an opaque object to establish correspondence for triangulation, compressive structured light projects patterns into a volume of participating medium to produce images which are integral measurements of the volume density along the line of sight. For a typical participating medium encountered in the real world, the integral nature of the acquired images enables the use of compressive sensing techniques that can recover the entire volume density from only a few measurements.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
October 2011
We introduce the use of describable visual attributes for face verification and image search. Describable visual attributes are labels that can be given to an image to describe its appearance. This paper focuses on images of faces and the attributes used to describe them, although the concepts also apply to other domains.
View Article and Find Full Text PDFImaging of objects under variable lighting directions is an important and frequent practice in computer vision, machine vision, and image-based rendering. Methods for such imaging have traditionally used only a single light source per acquired image. They may result in images that are too dark and noisy, e.
View Article and Find Full Text PDFThe properties of virtually all real-world materials change with time, causing their bidirectional reflectance distribution functions (BRDFs) to be time varying. However, none of the existing BRDF models and databases take time variation into consideration; they represent the appearance of a material at a single time instance. In this paper, we address the acquisition, analysis, modeling, and rendering of a wide range of time-varying BRDFs (TVBRDFs).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2006
Three-dimensional appearance models consisting of spatially varying reflectance functions defined on a known shape can be used in analysis-by-synthesis approaches to a number of visual tasks. The construction of these models requires the measurement of reflectance, and the problem of recovering spatially varying reflectance from images of known shape has drawn considerable interest. To date, existing methods rely on either: (1) low-dimensional (e.
View Article and Find Full Text PDF