In this study, for the first time, a Photoacoustic Microscopy instrument driven by a single optical source operating over a wide spectral range (475-2400 nm), covering slightly more than two octaves is demonstrated. Xenopus laevis tadpoles were imaged in vivo using the whole spectral range of 2000 nm of a supercontinuum optical source, and a novel technique of mapping absorbers is also demonstrated, based on the supposition that only one chromophore contributes to the photoacoustic signal of each individual voxel in the 3D photoacoustic image. By using a narrow spectral window (of 25 nm bandwidth) within the broad spectrum of the supercontinuum source at a time, in vivo hyper-spectral Photoacoustic images of tadpoles are obtained.
View Article and Find Full Text PDFThis publisher's note contains a correction to Opt. Lett.46, 1820 (2021)10.
View Article and Find Full Text PDFWe report an octave-spanning coherent supercontinuum (SC) fiber laser with excellent noise and polarization properties. This was achieved by pumping a highly birefringent all-normal dispersion photonic crystal fiber with a compact high-power ytterbium femtosecond laser at 1049 nm. This system generates an ultra-flat SC spectrum from 670 to 1390 nm with a power spectral density higher than 0.
View Article and Find Full Text PDFThe realization of a table-top tunable deep-ultraviolet (UV) laser source with excellent noise properties would significantly benefit the scientific community, particularly within imaging and spectroscopic applications, where source noise has a crucial role. Here we provide a thorough characterization of the pulse-to-pulse relative intensity noise (RIN) of such a deep-UV source based on an argon (Ar)-filled anti-resonant hollow-core (AR HC) fiber. Suitable pump pulses are produced using a compact commercially available laser centered at 1030 nm with a pulse duration of 400 fs, followed by a nonlinear compression stage that generates pulses with 30 fs duration, 24.
View Article and Find Full Text PDFWe experimentally investigate the influence of varying pulse parameters on the spectral broadening, power spectral density, and relative intensity noise of mid-infrared (mid-IR) in-amplifier cascaded supercontinuum generation (SCG) by varying the pulse duration (35 ps, 1 ns, 3 ns) and repetition rate (100, 500, 1000 kHz). The system is characterized at the output of the erbium-ytterbium-doped in-amplifier SCG stage, the thulium/germanium power redistribution stage, and the passive ZBLAN fiber stage. In doing so, we demonstrate that the output of the later stages depends critically on the in-amplifier stage, and relate this to the onset of modulation instability.
View Article and Find Full Text PDFWe demonstrate broadband supercontinuum generation in an all-normal dispersion polarization-maintaining photonic crystal fiber and report the observation of a cross-phase modulation instability sideband generated outside of the supercontinuum bandwidth. We demonstrate that this sideband is polarized on the slow axis and can be suppressed by pumping on the fiber's fast axis. We theoretically confirm and model this nonlinear process using phase-matching conditions and numerical simulations, obtaining good agreement with the measured data.
View Article and Find Full Text PDFCorrection for 'Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease' by Angela B. Seddon et al., Analyst, 2018, 143, 5874-5887.
View Article and Find Full Text PDFRecent advancements of mid-infrared (MIR) supercontinuum light sources have opened up new possibilities in laser-based trace gas sensing. While the supercontinuum sources inherently support wide spectral coverage, the detection of broadband absorption signals with high speed and low cost is traditionally limited by the MIR detector arrays. In this work, we demonstrate that this limitation can be circumvented by upconverting the MIR signal into the near-infrared (NIR) region, where cost-effective silicon-based detector arrays can be utilized to measure broadband absorption.
View Article and Find Full Text PDFWe present a fully integrated and transportable multi-species trace gas sensor based on a mid-infrared (MIR) supercontinuum light source. The high brightness (surpassing synchrotron) and ultra-broad spectral bandwidth (2-4 μm) of this light source allows simultaneous detection of multiple broadband absorbing gas species. High sensitivity in the sub-ppmv level has been achieved by utilizing an astigmatic multipass cell.
View Article and Find Full Text PDFA pure silica photonic crystal fiber with a group velocity dispersion (β) of 4 ps/km at 1.55 μm and less than 7 ps/km from 1.32 μm to the zero dispersion wavelength (ZDW) 1.
View Article and Find Full Text PDFIn this paper, a versatile method for synchronized imaging upconversion in the mid-IR wavelength range is presented. A 1064 nm master oscillator power amplifier source pump laser is electronically adjusted in pulse duration and repetition rate to match the output from a 40 kHz, 1.6 ns pulse mid-IR supercontinuum light source followed by upconversion to the near-infrared captured by a sensitive CCD camera.
View Article and Find Full Text PDFMid-infrared (MIR) fibre-optics may play a future role in in vivo diagnosis of disease, including cancer. Recently, we reported for the first time an optical fibre based broadband supercontinuum (SC) laser source spanning 1.3 to 13.
View Article and Find Full Text PDFIn this Letter, a novel method for the characterization of mid-infrared pulses is presented. A cross-correlator system, with no moving parts, combining ultra-broadband pulsed upconversion detection with fast active electronic delay tuning was built to perform time-resolved spectral characterization of 1.6 ns mid-infrared supercontinuum pulses.
View Article and Find Full Text PDFWe propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations.
View Article and Find Full Text PDFA broadband supercontinuum light source with an acousto-optic tunable filter (AOTF) are used to characterize dispersion in two time-domain OCT systems, at 850 and 1300 nm. The filter is designed to sweep across two spectral ranges, which are restricted here from 800 to 900 nm and from 1200 to 1500 nm, respectively. Dispersion compensation for 850 nm was achieved with a spectral delay line.
View Article and Find Full Text PDFIn this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.
View Article and Find Full Text PDFWe demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.
View Article and Find Full Text PDFSupercontinuum generation in chalcogenide fibers is a promising technology for broadband spatially coherent sources in the mid-infrared, but it suffers from discouraging commercial prospects, mainly due to a lack of suitable pump lasers. Here, a promising approach is experimentally demonstrated using an amplified 1.55 μm diode laser to generate a pump continuum up to 4.
View Article and Find Full Text PDFWe present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr(3+)) chalcogenide fibre lasers. The 4.5um laser is assumed to have a repetition rate of 4MHz with 50ps long pulses having a peak power of 4.
View Article and Find Full Text PDFWe theoretically demonstrate a novel approach for generating Mid-InfraRed SuperContinuum (MIR SC) by using concatenated fluoride and chalcogenide glass fibers pumped with a standard pulsed Thulium (Tm) laser (T(FWHM)=3.5ps, P0=20kW, ν(R)=30MHz, and P(avg)=2W). The fluoride fiber SC is generated in 10m of ZBLAN spanning the 0.
View Article and Find Full Text PDFUsing femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally.
View Article and Find Full Text PDFThe noise properties of a supercontinuum can be controlled by modulating the pump with a seed pulse. In this paper, we numerically investigate the influence of seeding with a partially phase coherent weak pulse or continuous wave. We demonstrate that the noise properties of the generated supercontinuum are highly sensitive to the degree of phase noise of the seed and that a nearly coherent seed pulse is needed to achieve a coherent pulse break-up and low noise supercontinuum.
View Article and Find Full Text PDF