Objective: Assessment is key in modern surgical education to monitor progress and document sufficient skills. Virtual reality (VR) temporal bone simulators allow automated tracking of basic metrics such as time, volume removed, and collisions. However, adequate performance assessment further includes compound rating of the stepwise bony excavation, and exposure and preservation of soft tissue structures.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
September 2024
Purpose: To investigate the impact of 3D-printed temporal bone models with two different material transparencies on trainees' mastoidectomy performance.
Methods: Eleven ORL residents performed two anatomical mastoidectomies with posterior tympanotomy on two 3D-printed models with different transparency and VR simulation training. Participants where divided into two groups based on their experience.
Stormwater Control Measures (SCMs) contribute to reducing micropollutant emissions from separate sewer systems. SCM planning and design are often performed by looking at the hydrological performance. Assessment of pollutant removal and the ability to comply with discharge concentration limits is often simplified due to a lack of data and limited monitoring resources.
View Article and Find Full Text PDFObjective: 3-D printing offers convenient and low-cost mastoidectomy training; nonetheless, training benefits using 3-D-printed temporal bones remain largely unexplored. In this study, we have collected validity evidence for a low-cost, 3-D-printed temporal bone for mastoidectomy training and established a credible pass/fail score for performance on the model.
Study Design: A prospective educational study gathering validity evidence using Messick's validity framework.
Background: 3D-printed temporal bone models can potentially provide a cost-effective alternative to cadaver surgery that can be manufactured locally at the training department. The objective of this study was to create a cost-effective 3D-printed model suitable for mastoidectomy training using entry level and commercially available print technologies, enabling individuals, without prior experience on 3D-printing, to manufacture their own models for basic temporal bone training.
Methods: Expert technical professionals and an experienced otosurgeon identified the best material for replicating the temporal bone and created a cost-effective printing routine for the model using entry-level print technologies.
Muscle atrophy is a well-known consequence of immobilization and critical illness, leading to prolonged rehabilitation and increased mortality. In this study, we develop a solution to preserve muscle mass using customized biocompatible neuromuscular electrical stimulation (NMES) device. Commercially available NMES solutions with gel-based electrodes often lead to skin irritation.
View Article and Find Full Text PDFUrban wet-weather discharges from combined sewer overflows (CSO) and stormwater outlets (SWO) are a potential pathway for micropollutants (trace contaminants) to surface waters, posing a threat to the environment and possible water reuse applications. Despite large efforts to monitor micropollutants in the last decade, the gained information is still limited and scattered. In a metastudy we performed a data-driven analysis of measurements collected at 77 sites (683 events, 297 detected micropollutants) over the last decade to investigate which micropollutants are most relevant in terms of 1) occurrence and 2) potential risk for the aquatic environment, 3) estimate the minimum number of data to be collected in monitoring studies to reliably obtain concentration estimates, and 4) provide recommendations for future monitoring campaigns.
View Article and Find Full Text PDFPollution levels in stormwater vary significantly during rain events, with pollutant flushes carrying a major fraction of an event pollutant load in a short period. Understanding these flushes is thus essential for stormwater management. However, current studies mainly focus on describing the first flush or are limited by predetermined flush categories.
View Article and Find Full Text PDFUnlabelled: In cochlear implantation (CI), excellent surgical technique is critical for hearing outcomes. Recent advances in temporal bone Virtual Reality (VR) training allow for specific training of CI and through introduction of new digital microscopes with ultra-high-fidelity (UHF) graphics. This study aims to investigate whether UHF increases performance in VR simulation training of CI electrode insertion compared with conventional, screen-based VR (cVR).
View Article and Find Full Text PDFThis is a case report of a hospitalised 62-year-old male patient with COVID-19, who received unilateral neuromuscular electrical stimulation treatment with a customised anti-embolic compression stocking and maintained muscle mass as well as maximum voluntary quadriceps contraction and balance during six days of illness-induced immobilisation. This illustrates, that short durations of neuromuscular electrical stimulation can help maintaining muscle mass and physical function in patients with SARS-CoV-2.
View Article and Find Full Text PDFBackground: Virtual reality (VR) simulation is an established option for temporal bone surgical training. Most VR simulators are based on computed tomography imaging, whereas the Visible Ear Simulator (VES) is based on high-fidelity cryosections of a single temporal bone specimen. Recently published OpenEar datasets combine cone-beam computed tomography (CBCT) and micro-slicing to achieve similar model quality.
View Article and Find Full Text PDFPurpose: To develop and gather validity evidence for a novel tool for assessment of cochlear implant (CI) surgery, including virtual reality CI surgery training.
Methods: Prospective study gathering validity evidence according to Messick's framework. Four experts developed the CI Surgery Assessment Tool (CISAT).
A simple model for online forecasting of ammonium (NH ) concentrations in sewer systems is proposed. The forecast model utilizes a simple representation of daily NH profiles and the dilution approach combined with information from online NH and flow sensors. The method utilizes an ensemble approach based on past observations to create model prediction bounds.
View Article and Find Full Text PDFPurpose: Ultra-high-fidelity (UHF) graphics in virtual reality (VR) simulation might improve surgical skill acquisition in temporal bone training. This study aims to compare UHF VR simulation training with conventional, screen-based VR simulation training (cVR) with respect to performance and cognitive load (CL).
Methods: In a randomized trial with a cross-over design, 24 students completed a total of four mastoidectomies in a VR temporal bone surgical simulator: two performances under UHF conditions using a digital microscope and two performances under conventional conditions using screen-based VR simulation.
Introduction: Simulation-integrated tutoring in virtual reality (VR) simulation training by green lighting is a common learning support in simulation-based temporal bone surgical training. However, tutoring overreliance can negatively affect learning. We therefore wanted to investigate the effects of simulator-integrated tutoring on performance and learning.
View Article and Find Full Text PDFPurpose: Virtual reality (VR) simulation surgical skills training is well established, but self-directed practice is often associated with a learning curve plateau. In this study, we investigate the effects of structured self-assessment as a means to improve performance in mastoidectomy training.
Methods: The study was a prospective, educational study.
Flow data represent crucial input for reliable diagnostics of sewer functions and identification of potential problems such as unwanted inflow and infiltration. Flow estimates from pumping stations, which are an integral part of most separate sewer systems, might help in this regard. A robust model and an associated optimization procedure is proposed for estimating inflow to a pumping station using only registered water levels in the pump sump and power consumption.
View Article and Find Full Text PDFOnline model predictive control (MPC) of water resource recovery facilities (WRRFs) requires simple and fast models to improve the operation of energy-demanding processes, such as aeration for nitrogen removal. Selected elements of the activated sludge model number 1 modelling framework for ammonium and nitrate removal were included in discretely observed stochastic differential equations in which online data are assimilated to update the model states. This allows us to produce model-based predictions including uncertainty in real time while it also reduces the number of parameters compared to many detailed models.
View Article and Find Full Text PDFObjective: Often the assessment of mastoidectomy performance requires time-consuming manual rating. Virtual reality (VR) simulators offer potentially useful automated assessment and feedback but should be supported by validity evidence. We aimed to investigate simulator metrics for automated assessment based on the expert performance approach, comparison with an established assessment tool, and the consequences of standard setting.
View Article and Find Full Text PDFWe examine how core professional and institutional actors in the innovation system conceptualize climate change adaptation in regards to pluvial flooding-and how this influences innovation. We do this through a qualitative case study in Copenhagen with interconnected research rounds, including 32 semi-structured interviews, to strengthen the interpretation and analysis of qualitative data. We find that the term "climate change adaptation" currently has no clearly agreed definition in Copenhagen; instead, different actors use different conceptualizations of climate change adaptation according to the characteristics of their specific innovation and implementation projects.
View Article and Find Full Text PDFThis study investigated the potential effect of climate changes on stormwater pollution runoff characteristics and the treatment efficiency of a stormwater retention pond in a 95 ha catchment in Denmark. An integrated dynamic stormwater runoff quality and treatment model was used to simulate two scenarios: one representing the current climate and another representing a future climate scenario with increased intensity of extreme rainfall events and longer dry weather periods. 100-year long high-resolution rainfall time series downscaled from regional climate model projections were used as input.
View Article and Find Full Text PDFBackground: Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy.
Methods: Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention).
The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect.
View Article and Find Full Text PDFObjectives/hypothesis: To explore why novices' performance plateau in directed, self-regulated virtual reality (VR) simulation training and how performance can be improved.
Study Design: Prospective study.
Methods: Data on the performances of 40 novices who had completed repeated, directed, self-regulated VR simulation training of mastoidectomy were included.
Objective: The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy.
View Article and Find Full Text PDF