Publications by authors named "Peter Meinecke"

Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.

View Article and Find Full Text PDF

Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus.

View Article and Find Full Text PDF

The cardiofacioneurodevelopmental syndrome (CFNDS) is characterized by craniofacial anomalies including bilateral cleft lip and palate, cardiac, skeletal, and neurodevelopmental features and additional variable manifestations. Whole-exome sequencing revealed homozygous loss-of-function variants in CCDC32 (alternative name: C15orf57) in both previously described patients. ccdc32 deletion in zebrafish suggests a ciliary contribution to the pathomechanism.

View Article and Find Full Text PDF
Article Synopsis
  • Heparan sulfate is a type of glycosaminoglycan involved in various biological processes, and HS2ST1 is an enzyme crucial for its synthesis by adding sulfate groups to its sugar structure.
  • Four individuals from three different families exhibited mutations in HS2ST1, leading to distinctive facial features, developmental delays, and other health issues such as kidney problems and skeletal abnormalities.
  • The study showed that these mutations reduce the production of HS2ST1, impair heparan sulfate function, and disrupt signaling pathways, highlighting the importance of heparan sulfate in proper development of the nervous system, skeleton, and kidneys.
View Article and Find Full Text PDF

Ryanodine receptor ion channels (RyR1s) release Ca ions from the sarcoplasmic reticulum to regulate skeletal muscle contraction. By whole-exome sequencing, we identified the heterozygous RYR1 variant c.14767_14772del resulting in the in-frame deletion p.

View Article and Find Full Text PDF

Co-occurrence of primordial dwarfism and microcephaly together with particular skeletal findings are seen in a wide range of Mendelian syndromes including microcephaly micromelia syndrome (MMS, OMIM 251230), microcephaly, short stature, and limb abnormalities (MISSLA, OMIM 617604), and microcephalic primordial dwarfisms (MPDs). Genes associated with these syndromes encode proteins that have crucial roles in DNA replication or in other critical steps of the cell cycle that link DNA replication to cell division. We identified four unrelated families with five affected individuals having biallelic or de novo variants in DONSON presenting with a core phenotype of severe short stature (z score < -3 SD), additional skeletal abnormalities, and microcephaly.

View Article and Find Full Text PDF

Acute liver failure (ALF) is a life-threatening condition in the absence of preexisting liver disease in children. The main clinical presentation comprises hepatic dysfunction, elevated liver biochemical values, and coagulopathy. The etiology of ALF remains unclear in most affected children; however, the recent identification of mutations in the neuroblastoma amplified sequence (NBAS) gene in autosomal recessively inherited ALF has shed light on the cause of a subgroup of fever-triggered pediatric ALF episodes.

View Article and Find Full Text PDF

X-linked intellectual disability (XLID) is a genetically heterogeneous disorder with more than 100 genes known to date. Most genes are responsible for a small proportion of patients only, which has hitherto hampered the systematic screening of large patient cohorts. We performed targeted enrichment and next-generation sequencing of 107 XLID genes in a cohort of 150 male patients.

View Article and Find Full Text PDF

Background: Floating-Harbor syndrome is a rare autosomal dominant short stature syndrome with retarded speech development, intellectual disability and dysmorphic facial features. Recently dominant mutations almost exclusively located in exon 34 of the Snf2-related CREBBP activator protein gene were identified to cause FHS.

Methods: Here we report the genetic analysis of 5 patients fulfilling the diagnostic criteria of FHS obtained by Sanger sequencing.

View Article and Find Full Text PDF

Marshall-Smith syndrome (MSS) is a very rare malformation syndrome characterized by typical craniofacial anomalies, abnormal osseous maturation, developmental delay, failure to thrive, and respiratory difficulties. Mutations in the nuclear factor 1/X gene (NFIX) were recently identified as the cause of MSS. In our study cohort of 17 patients with a clinical diagnosis of MSS, conventional sequencing of NFIX revealed frameshift and splice-site mutations in 10 individuals.

View Article and Find Full Text PDF

KCNJ8 (NM_004982) encodes the pore forming subunit of one of the ATP-sensitive inwardly rectifying potassium (KATP) channels. KCNJ8 sequence variations are traditionally associated with J-wave syndromes, involving ventricular fibrillation and sudden cardiac death. Recently, the KATP gene ABCC9 (SUR2, NM_020297) has been associated with the multi-organ disorder Cantú syndrome or hypertrichotic osteochondrodysplasia (MIM 239850) (hypertrichosis, macrosomia, osteochondrodysplasia, and cardiomegaly).

View Article and Find Full Text PDF

Glycosylated α-dystroglycan (α-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate α-DG, but many genes mutated in WWS remain unknown. To identify modifiers of α-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated α-DG to enter cells.

View Article and Find Full Text PDF

Hyperphosphatasia-mental retardation syndrome is a recently delineated disorder associated with a recognizable facial phenotype and brachytelephalangy. This autosomal recessive condition is caused by homozygous and compound heterozygous missense mutations of PIGV, encoding a member of the GPI-anchor biosynthesis pathway. Here, we report on two further, unrelated patients with developmental delay, elevated serum levels of AP, distinctive facial features, hypoplastic terminal phalanges, anal atresia in one and Hirschsprung disease in the other patient.

View Article and Find Full Text PDF

Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals.

View Article and Find Full Text PDF

We describe three patients with a syndrome comprising arched, thick eyebrows, hypertelorism, narrow palpebral fissures, broad nasal bridge and tip, long philtrum, thin upper lip, stubby hands and feet, hirsutism, and severe psychomotor retardation. These patients expand the phenotype of the Wiedemann-Steiner syndrome and delineate it as an entity.

View Article and Find Full Text PDF

Hyperphosphatasia mental retardation (HPMR) syndrome is an autosomal recessive form of mental retardation with distinct facial features and elevated serum alkaline phosphatase. We performed whole-exome sequencing in three siblings of a nonconsanguineous union with HPMR and performed computational inference of regions identical by descent in all siblings to establish PIGV, encoding a member of the GPI-anchor biosynthesis pathway, as the gene mutated in HPMR. We identified homozygous or compound heterozygous mutations in PIGV in three additional families.

View Article and Find Full Text PDF

Syndromic forms of disorders of sex development constitute a challenge for clinical and molecular investigations. We report on a 12-year-old girl presenting with lack of pubertal development, tall stature and moderate mental retardation. Conventional karyotyping at the age of 3 years revealed a male karyotype (46,XY).

View Article and Find Full Text PDF

Persistent hyperphosphatasia associated with developmental delay and seizures was described in a single family by Mabry et al. 1970 (OMIM 239300), but the nosology of this condition has remained uncertain ever since. We report on five new patients (two siblings, one offspring of consanguineous parents, and two sporadic patients) that help delineate this distinctive disorder and provide evidence in favor of autosomal recessive inheritance.

View Article and Find Full Text PDF

We present the clinical and radiological findings of seven patients with a seemingly new variant of Desbuquois dysplasia (DBQD) and emphasize the radiographic findings in the hand. All cases showed remarkably accelerated carpal bone ages in childhood, but none of the patients had an accessory ossification center distal to the second metacarpal, or thumb anomalies, instead, there was shortness of one or all metacarpals, with elongated appearance of phalanges, resulting in nearly equal length of the second to fifth fingers. The two sibs followed for 20 years showed narrowing and fusion of the intercarpal joints with age and ultimately, precocious degenerative arthritis.

View Article and Find Full Text PDF

Tetraploidy is a very rare finding in live-born infants. Nine infants with tetraploidy have been reported earlier. The phenotype is of variable severity and consists of prenatal and/or postnatal growth retardation, developmental delay, mental retardation, dysmorphic features, and skeletal and internal abnormalities.

View Article and Find Full Text PDF

The association of mental retardation and persistent hyperphosphatasia has been described in rare instances. Because of parental consanguinity and sib recurrences autosomal recessive inheritance has been proposed. We report three sibs with a syndrome consisting of severe mental retardation, considerably elevated serum levels of alkaline phosphatase, hypoplastic terminal phalanges, and distinct facial features.

View Article and Find Full Text PDF
Article Synopsis
  • Autosomal-dominant brachydactyly type A2 (BDA2) is caused by mutations in BMP receptor or GDF5, but a study found a novel locus on chromosome 20p12.3 associated with BDA2 involving BMP2.
  • High-density array CGH analysis revealed a 5.5 kb microduplication in a noncoding region downstream of BMP2, which was also found in another family, suggesting it could be a long-range regulatory element.
  • Using transgenic mice, researchers showed that this duplicated region drives expression of Bmp2 in limbs, confirming it acts as a limb-specific enhancer and contributes to BDA2 pathology.
View Article and Find Full Text PDF

Focal dermal hypoplasia (FDH) is an X-linked developmental disorder with male lethality characterized by patchy dermal hypoplasia, skeletal and dental malformations, and microphthalmia or anophthalmia. Recently, heterozygous loss-of-function mutations in the PORCN gene have been described to cause FDH. FDH shows some clinical overlap with the microphthalmia with linear skin defects (MLS) syndrome, another X-linked male lethal condition, associated with mutations of HCCS in the majority of cases.

View Article and Find Full Text PDF

We report on a 5-year-old boy with spondylocarpotarsal synostosis (SCT) syndrome who presents with disproportionate short stature, thoracic scoliosis, pes planus, dental enamel hypoplasia, unilateral conductive hearing loss and mild facial dysmorphisms. Radiographs showed abnormal segmentation of the spine with block vertebrae and carpal synostosis. In addition to the typical phenotype of SCT syndrome, he showed pronounced delay of carpal bone age and bilateral epiphyseal dysplasia of the proximal femora.

View Article and Find Full Text PDF

Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients.

View Article and Find Full Text PDF