Publications by authors named "Peter McMahon"

Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10), and the noise can be treated as a perturbation.

View Article and Find Full Text PDF

Quantum reservoir computing (QRC) has been proposed as a paradigm for performing machine learning with quantum processors where the training takes place in the classical domain, avoiding the issue of barren plateaus in parameterized-circuit quantum neural networks. It is natural to consider using a quantum processor based on microwave superconducting circuits to classify microwave signals that are analog-continuous in time. However, while there have been theoretical proposals of analog QRC, to date QRC has been implemented using the circuit model-imposing a discretization of the incoming signal in time.

View Article and Find Full Text PDF

Human brains and bodies are not hardware running software: the hardware is the software. We reason that because the physics of artificial intelligence hardware and of human biological "hardware" is distinct, neuromorphic engineers need to be selective in the inspiration we take from neuroscience.

View Article and Find Full Text PDF

A practical limit to energy efficiency in computation is ultimately from noise, with quantum noise [1] as the fundamental floor. Analog physical neural networks [2], which hold promise for improved energy efficiency and speed compared to digital electronic neural networks, are nevertheless typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10). We study optical neural networks [3] operated in the limit where all layers except the last use only a single photon to cause a neuron activation.

View Article and Find Full Text PDF

Samples of oil-field water (oil wells, injectate, disposal ponds) and groundwater near selected oil and gas fields in southern California were analyzed for dissolved organic carbon (DOC) concentration and by optical spectroscopic techniques (i.e., absorbance and fluorescence) to assess whether these measurements can be used to distinguish between oil-field water (Oil Field), native groundwater (WG), and native groundwater mixed with oil-field water from surface (WG) or subsurface sources (WG), and if so whether commonly reported optical measurements can be used as a screening tool to identify such water.

View Article and Find Full Text PDF

Mature oil fields potentially contain multiple fluid migration pathways toward protected groundwater (total dissolved solids, TDS, in nonexempted aquifer <10,000 mg/L) because of their extensive development histories. Time-series data for water use, fluid pressures, oil-well construction, and geochemistry from the South Belridge and Lost Hills mature oil fields in California are used to explore the roles of injection/production of oil-field water and well-integrity issues in fluid migration. Injection/production of oil-field water modified hydraulic gradients in both oil fields, resulting in chemical transport from deeper groundwater and hydrocarbon-reservoir systems to aquifers in the oil fields.

View Article and Find Full Text PDF

Unlabelled: ObjectiveTo assess use of bone-targeting agents (BTA) in patients with confirmed bone metastases (BM) from breast cancer (BC), non-small cell lung cancer (NSCLC) or prostate cancer (PC).

Design: Retrospective cohort study.

Setting: Regional hospital-based oncology database of approximately 2 million patients in England.

View Article and Find Full Text PDF

In 2019, 254 samples were collected from five aquifer systems to evaluate perfluoroalkyl and polyfluoroalkyl substance (PFAS) occurrence in groundwater used as a source of drinking water in the eastern United States. The samples were analyzed for 24 PFAS, major ions, nutrients, trace elements, dissolved organic carbon (DOC), volatile organic compounds (VOCs), pharmaceuticals, and tritium. Fourteen of the 24 PFAS were detected in groundwater, with 60 and 20% of public-supply and domestic wells, respectively, containing at least one PFAS detection.

View Article and Find Full Text PDF

Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability. Deep-learning accelerators aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics.

View Article and Find Full Text PDF

Deep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning.

View Article and Find Full Text PDF

A random forest regression (RFR) model was applied to over 12,000 wells with measured fluoride (F) concentrations in untreated groundwater to predict F concentrations at depths used for domestic and public supply in basin-fill aquifers of the western United States. The model relied on twenty-two regional-scale environmental and surficial predictor variables selected to represent factors known to control F concentrations in groundwater. The testing model fit R and RMSE were 0.

View Article and Find Full Text PDF

Groundwater samples collected from irrigation, monitoring, and municipal supply wells near the Oxnard Oil Field were analyzed for chemical and isotopic tracers to evaluate if thermogenic gas or water from hydrocarbon-bearing formations have mixed with surrounding groundwater. New and historical data show no evidence of water from hydrocarbon-bearing formations in groundwater overlying the field. However, thermogenic gas mixed with microbial methane was detected in 5 wells at concentrations ranging from 0.

View Article and Find Full Text PDF

A pilot village volunteer programme (VVP) was implemented to produce new knowledge about the extent to which 24 trained village volunteers, taking an integrated One Health approach, could assist their communities by disseminating information on better agricultural and health practices. Just prior to the six-month pilot, the volunteers were mentored in a four-day training programme by local agricultural extension and public health experts. On returning to their villages, contacts and activities by volunteers with local community members were monitored using a CommCare application, enabling uploaded data to be accessed in real-time.

View Article and Find Full Text PDF

We propose a deterministic, measurement-free implementation of a cubic phase gate for continuous-variable quantum information processing. In our scheme, the applications of displacement and squeezing operations allow us to engineer the effective evolution of the quantum state propagating through an optical Kerr nonlinearity. Under appropriate conditions, we show that the input state evolves according to a cubic phase Hamiltonian, and we find that the cubic phase gate error decreases inverse quartically with the amount of quadrature squeezing, even in the presence of linear loss.

View Article and Find Full Text PDF

Data from 38,105 wells were used to characterize fluoride (F) occurrence in untreated United States (U.S.) groundwater.

View Article and Find Full Text PDF

Nontuberculous mycobacterial lung disease (NTMLD) is a rare lung disease often missed due to a low index of suspicion and unspecific clinical presentation. This retrospective study was designed to characterise the prediagnosis features of NTMLD patients in primary care and to assess the feasibility of using machine learning to identify undiagnosed NTMLD patients.IQVIA Medical Research Data (incorporating THIN, a Cegedim Database), a UK electronic medical records primary care database was used.

View Article and Find Full Text PDF

We conducted an interdisciplinary One Health study of potential links between agricultural, health and associated livelihood factors on the livelihoods of smallholder cocoa-growing families in West Sulawesi. Our 2017 survey of 509 cocoa smallholder family members in 120 households in Polewali-Mandar District, West Sulawesi, Indonesia showed that farmers face many challenges to improving their livelihoods, including land management, agricultural practices, nutrition and human health, animal health, aging and demographic changes. Price fluctuations, limited access to capital and poor health deterred farmers from applying agricultural inputs and resulted in levels of low cocoa production (275 kg/annum per household).

View Article and Find Full Text PDF

Background: , a member of the family, is the causal agent of vascular-streak dieback (VSD) of cacao, a major threat to the chocolate industry in the South-East Asia. The fastidious pathogen is very hard to isolate and maintain in pure culture, which is a major bottleneck in the study of its genetic diversity and genome.

Result: This study describes for the first time, a 33.

View Article and Find Full Text PDF

Geochemical data from 40 water wells were used to examine the occurrence and sources of radium (Ra) in groundwater associated with three oil fields in California (Fruitvale, Lost Hills, South Belridge). Ra+Ra activities (range = 0.010-0.

View Article and Find Full Text PDF

We develop an extension of the variational quantum eigensolver (VQE) algorithm-multistate contracted VQE (MC-VQE)-that allows for the efficient computation of the transition energies between the ground state and several low-lying excited states of a molecule, as well as the oscillator strengths associated with these transitions. We numerically simulate MC-VQE by computing the absorption spectrum of an ab initio exciton model of an 18-chromophore light-harvesting complex from purple photosynthetic bacteria.

View Article and Find Full Text PDF

Water samples from 50 domestic wells located <1 km (proximal) and >1 km (distal) from shale-gas wells in upland areas of the Marcellus Shale region were analyzed for chemical, isotopic, and groundwater-age tracers. Uplands were targeted because natural mixing with brine and hydrocarbons from deep formations is less common in those areas compared to valleys. CH-isotope, predrill CH-concentration, and other data indicate that one proximal sample (5% of proximal samples) contains thermogenic CH (2.

View Article and Find Full Text PDF

Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs.

View Article and Find Full Text PDF

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays.

View Article and Find Full Text PDF

The relaxation of binary spins to analog values has been the subject of much debate in the field of statistical physics, neural networks, and more recently quantum computing, notably because the benefits of using an analog state for finding lower energy spin configurations are usually offset by the negative impact of the improper mapping of the energy function that results from the relaxation. We show that it is possible to destabilize trapping sets of analog states that correspond to local minima of the binary spin Hamiltonian by extending the phase space to include error signals that correct amplitude inhomogeneity of the analog spin states and controlling the divergence of their velocity. Performance of the proposed analog spin system in finding lower energy states is competitive against state-of-the-art heuristics.

View Article and Find Full Text PDF

Chemical data from 43 334 wells were used to examine the role of land surface-soil-aquifer connections in producing elevated manganese concentrations (>300 μg/L) in United States (U.S.) groundwater.

View Article and Find Full Text PDF