The opening line of a recent article put it best: "Relations between the UK and EU badly need a reset." Although the article was mostly about geopolitics, the disconnect also applies to science and the current uncertainty about whether the UK will remain an associated partner in European Union (EU) research programs such as Horizon Europe. In the post-Brexit era, and with a new UK Prime Minister to be named shortly, the UK and EU should be considering how best to maximize the potential of the numerous brilliant scientists, technicians, academics, and clinicians working in the universities and research institutes of all European countries, including the UK.
View Article and Find Full Text PDFIntroduction: Shiga toxin 2a (Stx2a) induces hemolytic uremic syndrome (STEC HUS) by targeting glomerular endothelial cells (GEC).
Objectives: We investigated in a metabolomic analysis the response of a conditionally immortalized, stable glomerular endothelial cell line (ciGEnC) to Stx2a stimulation as a cell culture model for STEC HUS.
Methods: CiGEnC were treated with tumor necrosis factor-(TNF)α, Stx2a or sequentially with TNFα and Stx2a.
Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in and models as well as in patients.
View Article and Find Full Text PDFGlucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive.
View Article and Find Full Text PDFMiddle East respiratory syndrome coronavirus (MERS-CoV) causes sporadic zoonotic disease and healthcare-associated outbreaks in human. MERS is often complicated by acute respiratory distress syndrome (ARDS) and multi-organ failure(1,2). The high incidence of renal failure in MERS is a unique clinical feature not often found in other human coronavirus infections(3,4).
View Article and Find Full Text PDFIQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function.
View Article and Find Full Text PDFBackground: Fibrin deposition within glomeruli is commonly seen in kidney biopsy specimens, suggesting enhanced coagulant activity. Tissue factor (TF) is a coagulation factor which is also related to various biological effects, and TF is upregulated by hypoxia in cancer cells. Recently, hypoxic podocyte injury has been proposed, therefore, we investigated TF expression in hypoxia.
View Article and Find Full Text PDFMinimal change nephropathy (MCN) is the third most common cause of primary nephrotic syndrome in adults. Most patients with MCN respond to corticosteroid therapy, but relapse is common. In children, steroid-dependent patients are often given alternative agents to spare the use of steroids and to avoid the cumulative steroid toxicity.
View Article and Find Full Text PDFIn the present study, we evaluated the effect of short term hyperglycemia on renal lesions in a mouse model (Tg26) of HIV-associated nephropathy (HIVAN). Control and Tg26 mice in groups (n=6) were administered either normal saline (FVBN or Tg) or streptozotocin (FVBN+STZ or Tg26+STZ). After two weeks, biomarkers were collected and kidneys were harvested.
View Article and Find Full Text PDFIntroduction: The tertiary structure of normal podocytes prevents protein from leaking into urine. Patients with lupus nephritis (LN) develop proteinuria, and kidney biopsies from these patients display a number of podocyte abnormalities including retraction of podocyte processes. Autoantibodies have been shown to deposit in the kidneys of patients and mice with LN and are believed to play a key role in causing renal inflammation and dysfunction.
View Article and Find Full Text PDFThe endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx.
View Article and Find Full Text PDFAlthough APOL1 gene variants are associated with nephropathy in African Americans, little is known about APOL1 protein synthesis, uptake, and localization in kidney cells. To address these questions, we examined APOL1 protein and mRNA localization in human kidney and human kidney-derived cell lines. Indirect immunofluorescence microscopy performed on nondiseased nephrectomy cryosections from persons with normal kidney function revealed that APOL1 protein was markedly enriched in podocytes (colocalized with synaptopodin and Wilms' tumor suppressor) and present in lower abundance in renal tubule cells.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2014
Development of higher rates of nondiabetic glomerulosclerosis (GS) in African Americans has been attributed to two coding sequence variants (G1 and G2) in the APOL1 gene. To date, the cellular function and the role of APOL1 variants (Vs) in GS are still unknown. In this study, we examined the effects of overexpressing wild-type (G0) and kidney disease risk variants (G1 and G2) of APOL1 in human podocytes using a lentivirus expression system.
View Article and Find Full Text PDFThe glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood.
View Article and Find Full Text PDFDamage to endothelial glycocalyx impairs vascular barrier function and may contribute to progression of chronic vascular disease. An early indicator is microalbuminuria resulting from glomerular filtration barrier damage. We investigated the contributions of hyaluronic acid (HA) and chondroitin sulfate (CS) to glomerular microvascular endothelial cell (GEnC) glycocalyx and examined whether these are modified by vascular endothelial growth factors A and C (VEGFA and VEGFC).
View Article and Find Full Text PDFBackground: Minimal change disease (MCD) is the most common cause of nephrotic syndrome in children and is associated with the expression of CD80 in podocytes and the increased excretion of CD80 in urine. We hypothesized that serum from patients with MCD might stimulate CD80 expression in cultured podocytes.
Methods: Sera and peripheral blood mononuclear cells (PBMCs) were collected from subjects with MCD in relapse and remission and from normal controls.
Am J Physiol Renal Physiol
August 2013
Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies.
View Article and Find Full Text PDFRecent studies suggested that miRNAs are involved in the development of the pathogenesis of HIV-associated nephropathy (HIVAN). Rapamycin, a widely used mTOR inhibitor, has been demonstrated to slow down the progression of HIVAN. However, the role of miRNA in the regulation of these processes has not been investigated so far.
View Article and Find Full Text PDFMorphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular.
View Article and Find Full Text PDFAlterations in the podocyte actin cytoskeleton have been implicated in the development of proteinuric kidney diseases. In the present study, we evaluated the effect of HIV on the podocyte actin cytoskeleton and the mechanism involved. We hypothesized that HIV may be compromising the actin cytoskeleton via downregulation of the vitamin D receptor (VDR) of conditionally immortalized differentiated human podocytes (CIDHPs).
View Article and Find Full Text PDFReactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx.
View Article and Find Full Text PDFThe M-type receptor for phospholipase A2 (PLA2R1) is the major target antigen in idiopathic membranous nephropathy (iMN). Our recent genome-wide association study showed that genetic variants in an HLA-DQA1 and phospholipase A2 receptor (PLA2R1) allele associate most significantly with biopsy-proven iMN, suggesting that rare genetic variants within the coding region of the PLA2R1 gene may contribute to antibody formation. Here, we sequenced PLA2R1 in a cohort of 95 white patients with biopsy-proven iMN and assessed all 30 exons of PLA2R1, including canonical (GT-AG) splice sites, by Sanger sequencing.
View Article and Find Full Text PDF