We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.
View Article and Find Full Text PDFWe present results for the relation between a heavy quark mass defined in the on-shell and minimal subtraction (MS[over ¯]) scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS[over ¯] quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS[over ¯] heavy quark masses.
View Article and Find Full Text PDFWe present the full analytic result for the three loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the lightlike cusp anomalous dimension.
View Article and Find Full Text PDFWe present the complete next-to-next-to-next-to-leading order short-distance and bound-state QCD correction to the leptonic decay rate Γ(ϒ(1S)→ℓ+ℓ-) of the lowest-lying spin-1 bottomonium state. The perturbative QCD prediction is compared to the measurement Γ(ϒ(1S)→e+e-)=1.340(18) keV.
View Article and Find Full Text PDF