Seaweed aquaculture is growing 8.9 % annually to a forecast US$ 22.13 billion in 2024 and has several environmental, economic and social co-benefits.
View Article and Find Full Text PDFMangrove forests play an important role in climate change mitigation and adaptation, globally recognized as natural climate solution. The protection and restoration of mangrove ecosystems are especially important to Small Island Developing States, like Seychelles, due to their vulnerability to the impacts of climate change, such as sea level rise and tropical cyclones. Therefore, it is crucial for countries like Seychelles to develop baseline information on the status of their mangrove forests to guide conservation and management actions.
View Article and Find Full Text PDFNutrient loading is a major driver of seagrass ecosystem decline and also threatens the capacity for seagrass ecosystems to act as 'blue carbon' sinks. Dissolved organic carbon (DOC) represents a crucial component of carbon storage in seagrass ecosystems, with refractory DOC (RDOC) playing a key role in long-term (millennial time scale) carbon stocks. The processes governing RDOC are heavily influenced by microbial activity.
View Article and Find Full Text PDFFarm dams, also known as 'agricultural ponds', are ubiquitous features of agricultural landscapes globally. Those accessed by livestock have high methane (CH) emissions per unit area relative to other freshwater systems. Fencing dams and installing water troughs to prevent livestock from entering the dams are promising strategies to improve water quality and substantially reduce their carbon footprints.
View Article and Find Full Text PDFBlue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are important nature-based solutions for climate change mitigation and adaptation but are threatened by degradation. Effective BCE restoration requires strategic planning and site selection to optimise outcomes. We developed a Geographic Information System (GIS)-based multi-criteria decision support tool to identify suitable areas for BCE restoration along the 2512 km-long coastline of Victoria, Australia.
View Article and Find Full Text PDFBlue carbon ecosystems (BCEs), encompassing mangroves, saltmarshes, and seagrasses, are vital ecosystems that deliver valuable services such as carbon sequestration, biodiversity support, and coastal protection. However, these ecosystems are threatened by various anthropogenic factors, including tidal restrictions like levees, barriers, and embankments. These structures alter the natural seawater flow, often converting coastal ecosystems into freshwater environments.
View Article and Find Full Text PDFSalt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s).
View Article and Find Full Text PDFSeagrass meadows are globally recognized as critical natural carbon sinks, commonly known as 'blue carbon'. However, seagrass decline attributed to escalating human activities and climate change, significantly influences their carbon sequestration capacity. A key aspect in comprehending the impact of seagrass decline on carbon sequestration is understanding how degradation affects the stored blue carbon, primarily consisting of sediment organic carbon (SOC).
View Article and Find Full Text PDFPhotoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning.
View Article and Find Full Text PDFThe loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem.
View Article and Find Full Text PDFFreshwater wetlands have a disproportionately large influence on the global carbon cycle, with the potential to serve as long-term carbon sinks. Many of the world's freshwater wetlands have been destroyed or degraded, thereby affecting carbon-sink capacity. Ecological restoration of degraded wetlands is thus becoming an increasingly sought-after natural climate solution.
View Article and Find Full Text PDFPlastics are rapidly accumulating in blue carbon ecosystems, i.e., mangrove forests, tidal marshes, and seagrass meadows.
View Article and Find Full Text PDFThe Blue Carbon Ecosystems (BCEs), comprising mangroves, saltmarshes, and seagrasses, located at the land-ocean interface provide crucial ecosystem services. These ecosystems serve as a natural barrier against the transportation of plastic waste from land to the ocean, effectively intercepting and mitigating plastic pollution in the ocean. To gain insights into the current state of research, and uncover key research gaps related to plastic pollution in BCEs, this study conveyed a comprehensive overview using bibliometric, altmetric, and literature synthesis approaches.
View Article and Find Full Text PDFThousands of artificial ('human-made') structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion.
View Article and Find Full Text PDFSwitching from fossil fuels to renewable energy is key to international energy transition efforts and the move toward net zero. For many nations, this requires decommissioning of hundreds of oil and gas infrastructure in the marine environment. Current international, regional and national legislation largely dictates that structures must be completely removed at end-of-life although, increasingly, alternative decommissioning options are being promoted and implemented.
View Article and Find Full Text PDFSeagrass ecosystems have received a great deal of attention for contributing to uptake of atmospheric CO, and thereby helping to mitigate global climate change ('blue carbon'). Carbon budgets for seagrass ecosystems are developed by estimating air-sea CO fluxes. Data for air-sea CO flux for tropical seagrass ecosystems are lacking, which is problematic for constraining global seagrass carbon budgets.
View Article and Find Full Text PDFTidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM).
View Article and Find Full Text PDFMangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata).
View Article and Find Full Text PDFInvasive Spartina alterniflora has become a global management challenge in coastal wetlands. China has decided to eradicate it completely, but the high costs and its provision of beneficial ecosystem functions (EF, in the form of blue carbon and coastal protection) have raised concerns about its removal. Here, using the Yangtze Estuary as a case study, we explore a reasonable pathway of S.
View Article and Find Full Text PDFBlue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are increasingly recognized as natural climate solutions. Evaluating the current extent, losses, and gains of BCEs is crucial to estimating greenhouse gas emissions and supporting policymaking. Remote sensing approaches are uniquely suited to assess the factors driving BCEs dynamics and their impacts at various spatial and temporal scales.
View Article and Find Full Text PDFCoastal saltmarshes provide globally important ecosystem services including 'blue carbon' sequestration, flood protection, pollutant remediation, habitat provision and cultural value. Large portions of marshes have been lost or fragmented as a result of land reclamation, embankment construction, and pollution. Sea level rise threatens marsh survival by blocking landward migration where coastlines have been developed.
View Article and Find Full Text PDF