Publications by authors named "Peter Macek"

Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species.

View Article and Find Full Text PDF

The clinical role of pharmacists in a correctional facility has not been fully described. We report the proportion of patients assessed by a pharmacist within 48 hours of admission to a large correctional facility. Of those assessed, the frequency and type of pharmacist interventions were described.

View Article and Find Full Text PDF

The role of pharmacists has undergone a significant transformation. Expanding clinical roles in the community and hospital settings have led to opportunity for correctional facility pharmacists to expand their practice. This literature review identifies past and present roles of correctional pharmacists, along with areas for growth.

View Article and Find Full Text PDF

Ceramide phosphoethanolamine (CPE) is the major sphingolipid in invertebrates and in some bacterial species. It has been also detected in mammalian cells, although only in trace amounts. Complete understanding of the biophysical and physiological relevance of CPE is still lacking, and its biological role is still an open question.

View Article and Find Full Text PDF

Aegerolysins ostreolysin A (OlyA) and pleurotolysin A (PlyA), and pleurotolysin B (PlyB) with the membrane-attack-complex/perforin domain are proteins from the mushroom genus Pleurotus. Upon binding to sphingomyelin/cholesterol-enriched membranes, OlyA and PlyA can recruit PlyB to form multimeric bi-component transmembrane pores. Recently, Pleurotus aegerolysins OlyA, PlyA2 and erylysin A (EryA) were demonstrated to preferentially bind to artificial lipid membranes containing 50 mol% ceramide phosphoethanolamine (CPE), the main sphingolipid in invertebrate cell membranes.

View Article and Find Full Text PDF

Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios.

View Article and Find Full Text PDF

An asymmetrical flow field-flow fractionation (AF4) technique coupled to a multiangle light scattering (MALS) detector with an embedded dynamic light scattering (DLS) module was introduced to study the size characteristics and shape of soft particles of various size and type: polystyrene nanosphere size standards, lipid droplets (LDs), and large unilamellar vesicles (LUVs). A range of flow velocities through the LS detector, at which accurate hydrodynamic size can be extracted from the DLS in flow mode, was studied since the particles subjected to a longitudinal flow exhibit not only the Brownian motion due to diffusion but also the translational movement. In addition, the impact of the longitudinal flow velocity on the shape of the artificial LUV of two different sizes and two different compositions was studied by MALS.

View Article and Find Full Text PDF

Proteins of the aegerolysin family span many kingdoms of life. They are relatively widely distributed in bacteria and fungi, but also appear in plants, protozoa and insects. Despite being produced in abundance in cells at specific developmental stages and present in secretomes, only a few aegerolysins have been studied in detail.

View Article and Find Full Text PDF

Ostreolysin A (OlyA) is a 15-kDa protein that binds selectively to cholesterol/sphingomyelin membrane nanodomains. This binding induces the production of extracellular vesicles (EVs) that comprise both microvesicles with diameters between 100nm and 1μm, and larger vesicles of around 10-μm diameter in Madin-Darby canine kidney cells. In this study, we show that vesiculation of these cells by the fluorescent fusion protein OlyA-mCherry is not affected by temperature, is not mediated via intracellular Ca signalling, and does not compromise cell viability and ultrastructure.

View Article and Find Full Text PDF

The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage.

View Article and Find Full Text PDF

Asymmetric-flow field-flow fractionation technique coupled to a multi-angle light-scattering detector (AF4-MALS) was used together with dynamic light-scattering (DLS) in batch mode and transmission electron microscopy (TEM) to study the size characteristics of the trioleoylglycerol lipid droplets covered by a monolayer of sphingomyelin and cholesterol, in water phase. These lipid droplet nanoemulsions (LD) were formed by ultrasonication. In parallel, the size characteristics of large unilamellar lipid vesicles (LUV) prepared by extrusion and composed of sphingomyelin and cholesterol were determined.

View Article and Find Full Text PDF

Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells.

View Article and Find Full Text PDF

Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin.

View Article and Find Full Text PDF

Ostreolysin A/pleurotolysin B (OlyA/PlyB) is a binary pore-forming protein complex that produces a rapid cardiorespiratory arrest. Increased tonus of the coronary vascular wall produced by OlyA/PlyB may lead to ischemia, arrhythmias, the hypoxic injury of cardiomyocytes and cardiotoxicity. We evaluated the effects of OlyA/PlyB in cultured vascular smooth muscle A10 cells.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa uses quorum-sensing systems to regulate collective behaviour in response to the environment, by linking the expression of particular genes to population density. The quorum-sensing transcription factors LasR and RhlR and their cognate N-acyl-homoserine lactone (HSL) signals N-3-oxo-dodecanoyl-L-HSL (3OC12-HSL) and N-butanoyl-L-HSL (C4-HSL) control the expression of several hundred genes, which include those involved in virulence and biofilm formation. Here, we have focused on regulation of the expression of the putative virulence factor gene, rahU.

View Article and Find Full Text PDF

The aegerolysin protein family (from aegerolysin of the mushroom Agrocybe aegerita) comprises proteins of ∼15-20 kDa from various eukaryotic and bacterial taxa. Aegerolysins are inconsistently distributed among fungal species, and variable numbers of homologs have been reported for species within the same genus. As such noncore proteins, without a member of a protein family in each of the sequenced fungi, they can give insight into different species-specific processes.

View Article and Find Full Text PDF

Ethanolic extracts of mycelia from Aspergillus niger (strain N402) grown in liquid media were observed to have haemolytic activity on bovine erythrocytes. This haemolytic activity decreased significantly during the time of growth (1-3 days). Moreover, when A.

View Article and Find Full Text PDF

Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents.

View Article and Find Full Text PDF

Ostreolysin A (OlyA) is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry) labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK) epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA.

View Article and Find Full Text PDF

Proteins from the oyster mushroom, 15 kDa ostreolysin A (OlyA), and 59 kDa pleurotolysin B (PlyB) with a membrane attack complex/perforin (MACPF) domain, damage cell membranes as a binary cytolytic pore-forming complex. Measurements of single-channel conductance and transmembrane macroscopic current reveal that OlyA/PlyB form non-selective ion-conducting pores with broad, skewed conductance distributions in N18 neuroblastoma and CHO-K1 cell membranes. Polyethylene-glycol 8000 (hydrodynamic radius of 3.

View Article and Find Full Text PDF

Androgen deprivation therapy is the standard of care for the initial treatment of metastatic prostate cancer. However, the majority of these patients live long enough to experience disease progression despite castration. This scenario is defined as castration-resistant prostate cancer (CRPC) and has a poor outcome and limited options for treatment.

View Article and Find Full Text PDF

The mushroom Pleurotus ostreatus has been reported to produce the hemolytic proteins ostreolysin (OlyA), pleurotolysin A (PlyA) and pleurotolysin B (PlyB). The present study of the native and recombinant proteins dissects out their lipid-binding characteristics and their roles in lipid binding and membrane permeabilization. Using lipid-binding studies, permeabilization of erythrocytes, large unilamellar vesicles of various lipid compositions, and electron microscopy, we show that OlyA, a PlyA homolog, preferentially binds to membranes rich in sterol and sphingomyelin, but it does not permeabilize them.

View Article and Find Full Text PDF

Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant.

View Article and Find Full Text PDF

Proteins with hemopexin repeats are widespread in viruses, prokaryotes and eukaryotes. We report here for the first time the existence of a protein in fungi with the four-bladed β-propeller fold that is typical for hemopexin-like proteins. This protein was isolated from the edible basidiomycetous fungus Pleurotus ostreatus and is named ostreopexin.

View Article and Find Full Text PDF

Cnidarians, mostly soft-bodied water organisms, produce several classes of toxins deployed in biological warfare or signalling. Cytolytic toxins, that form pores in cell membranes, form a significant part of their "weaponry". Here, we describe the physiological relevance of membrane permeabilization, and present basic data on those proteinaceous cnidarian cytolysins proven or presumed to damage cell membranes by pore formation.

View Article and Find Full Text PDF