Spatially uniform magnetic fields induce nonzero forces on magnetic particles adsorbed at curved liquid interfaces thereby driving their motion. Such motions, prohibited in bulk fluids, arise due to interfacial constraints that couple magnetic torques to capillary forces at curved interfaces. Here, we show that time-varying (spatially uniform) magnetic fields can be used to drive a variety of steady particle motions on water drops in decane.
View Article and Find Full Text PDF