Background: DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility.
Methods: We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network.
Purpose: We have previously reported that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion patterns obtained from locally advanced breast cancer (LABC) patients prior to neoadjuvant therapy predicted pathologic clinical response. Genomic analyses were also independently conducted on the same patient population. This retrospective study was performed to test two hypotheses: (1) gene expression profiles are associated with DCE-MRI perfusion patterns, and (2) association between long-term overall survival data and gene expression profiles can lead to the identification of novel predictive biomarkers.
View Article and Find Full Text PDFExercise has been shown to improve postischemia perfusion of normal tissues; we investigated whether these effects extend to solid tumors. Estrogen receptor-negative (ER-, 4T1) and ER+ (E0771) tumor cells were implanted orthotopically into syngeneic mice (BALB/c, N = 11-12 per group) randomly assigned to exercise or sedentary control. Tumor growth, perfusion, hypoxia, and components of the angiogenic and apoptotic cascades were assessed by MRI, immunohistochemistry, western blotting, and quantitative polymerase chain reaction and analyzed with one-way and repeated measures analysis of variance and linear regression.
View Article and Find Full Text PDFInhibition of glycolysis using 2-deoxy-d-glucose (2DG, 20mM, 24-48h) combined with inhibition of the pentose cycle using dehydroepiandrosterone (DHEA, 300µM, 24-48h) increased clonogenic cell killing in both human prostate (PC-3 and DU145) and human breast (MDA-MB231) cancer cells via a mechanism involving thiol-mediated oxidative stress. Surprisingly, when 2DG+DHEA treatment was combined with an inhibitor of glutathione (GSH) synthesis (l-buthionine sulfoximine; BSO, 1mM) that depleted GSH>90% of control, no further increase in cell killing was observed during 48h exposures. In contrast, when an inhibitor of thioredoxin reductase (TrxR) activity (Auranofin; Au, 1µM), was combined with 2DG+DHEA or DHEA-alone for 24h, clonogenic cell killing was significantly increased in all three human cancer cell lines.
View Article and Find Full Text PDFPurpose: Gliomas are one of the most fatal malignancies, with largely unknown etiology. This study examines a possible connection between glioma and melanoma, which might provide insight into gliomas' etiology.
Methods: Using data provided by the Surveillance, Epidemiology, and End Results program from 1992 to 2009, a cohort was constructed to determine the incidence rates of glioma among those who had a prior diagnosis of invasive melanoma.
Lactate accumulation in tumors has been associated with metastases and poor overall survival in cancer patients. Lactate promotes angiogenesis and metastasis, providing rationale for understanding how it is processed by cells. The concentration of lactate in tumors is a balance between the amount produced, amount carried away by vasculature and if/how it is catabolized by aerobic tumor or stromal cells.
View Article and Find Full Text PDFBackground: There is increasing evidence that tumor hypoxia plays a significant role in the chemoresistance of melanoma, but to our knowledge, real-time tumor oxygenation during isolated limb infusion (ILI) has not been studied. We sought to demonstrate the feasibility of measuring real-time alterations in tissue oxygenation.
Methods: Consecutive patients with histologically confirmed in-transit melanoma were enrolled onto a prospective single-arm pilot study and administered the hypoxia marker drug EF5.
Purpose: Oxidative stress has been implicated in Down syndrome (DS) pathology. This study compares DS individuals and controls on their urinary levels of allantoin and 2,3-dinor-iPF2α-III; these biomarkers have been previously validated in a clinical model of oxidative stress.
Methods: Urine samples were collected from 48 individuals with DS and 130 controls.
Purpose: Oxidative damage has been implicated in carcinogenesis. We hypothesized that elevated systemic oxidative status would be associated with later occurrence of colorectal adenomatous polyps, a precursor of colorectal cancer.
Methods: We examined the prospective association between four systemic markers of oxidative status and colorectal adenomatous polyps within a nondiabetic subcohort of the Insulin Resistance Atherosclerosis Study (n = 425).
17-Allylamino-17-demethoxygeldanamycin (17AAG) is an experimental chemotherapeutic agent believed to form free radicals in vivo, and cancer cell resistance to 17AAG is believed to be a thiol-dependent process. Inhibitors of thiol-dependent hydroperoxide metabolism [L-buthionine-S,R-sulfoximine (BSO) and auranofin] were combined with the glucose metabolism inhibitor 2-deoxy-d-glucose (2DG) to determine if 17AAG-mediated cancer cell killing could be enhanced. When 2DG (20mM, 24h), BSO (1mM, 24h), and auranofin (500nM, 3h) were combined with 17AAG, cell killing was significantly enhanced in three human cancer cell lines (PC-3, SUM159, MDA-MB-231).
View Article and Find Full Text PDFRedox regulation of epidermal growth factor receptor (EGFR) signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was mediated by induction of oxidative stress in human head and neck cancer (HNSCC) cells. ERL elicited cytotoxicity in vitro and in vivo while increasing a panel of oxidative stress parameters which were all reversible by the antioxidant N-acetyl cysteine.
View Article and Find Full Text PDF