Publications by authors named "Peter M Roth"

Surveillance imaging of patients with chronic aortic diseases, such as aneurysms and dissections, relies on obtaining and comparing cross-sectional diameter measurements along the aorta at predefined aortic landmarks, over time. The orientation of the cross-sectional measuring planes at each landmark is currently defined manually by highly trained operators. Centerline-based approaches are unreliable in patients with chronic aortic dissection, because of the asymmetric flow channels, differences in contrast opacification, and presence of mural thrombus, making centerline computations or measurements difficult to generate and reproduce.

View Article and Find Full Text PDF

High-throughput profiling of key enzyme activities of carbon, nitrogen, and antioxidant metabolism is emerging as a valuable approach to integrate cell physiological phenotyping into a holistic functional phenomics approach. However, the analyses of the large datasets generated by this method represent a bottleneck, often keeping researchers from exploiting the full potential of their studies. We address these limitations through the exemplary application of a set of data evaluation and visualization tools within a case study.

View Article and Find Full Text PDF

Many scientific studies deal with person counting and density estimation from single images. Recently, convolutional neural networks (CNNs) have been applied for these tasks. Even though often better results are reported, it is often not clear where the improvements are resulting from, and if the proposed approaches would generalize.

View Article and Find Full Text PDF

Information plane analysis, describing the mutual information between the input and a hidden layer and between a hidden layer and the target over time, has recently been proposed to analyze the training of neural networks. Since the activations of a hidden layer are typically continuous-valued, this mutual information cannot be computed analytically and must thus be estimated, resulting in apparently inconsistent or even contradicting results in the literature. The goal of this paper is to demonstrate how information plane analysis can still be a valuable tool for analyzing neural network training.

View Article and Find Full Text PDF

Motivation: Image augmentation is a frequently used technique in computer vision and has been seeing increased interest since the popularity of deep learning. Its usefulness is becoming more and more recognized due to deep neural networks requiring larger amounts of data to train, and because in certain fields, such as biomedical imaging, large amounts of labelled data are difficult to come by or expensive to produce. In biomedical imaging, features specific to this domain need to be addressed.

View Article and Find Full Text PDF

We present an approach for fully automatic urinary bladder segmentation in CT images with artificial neural networks in this study. Automatic medical image analysis has become an invaluable tool in the different treatment stages of diseases. Especially medical image segmentation plays a vital role, since segmentation is often the initial step in an image analysis pipeline.

View Article and Find Full Text PDF

Classifier grids have shown to be a considerable choice for object detection from static cameras. By applying a single classifier per image location the classifier's complexity can be reduced and more specific and thus more accurate classifiers can be estimated. In addition, by using an on-line learner a highly adaptive but stable detection system can be obtained.

View Article and Find Full Text PDF