Publications by authors named "Peter M Rogowsky"

Introduction: Despite its rapid worldwide adoption as an efficient mutagenesis tool, plant genome editing remains a labor-intensive process requiring often several months of culture to obtain mutant plantlets. To avoid a waste in time and money and to test, in only a few days, the efficiency of molecular constructs or novel Cas9 variants (clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9) prior to stable transformation, rapid analysis tools are helpful.

Methods: To this end, a streamlined maize protoplast system for transient expression of CRISPR/Cas9 tools coupled to NGS (next generation sequencing) analysis and a novel bioinformatics pipeline was established.

View Article and Find Full Text PDF

Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos.

View Article and Find Full Text PDF

Doubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations.

View Article and Find Full Text PDF

Mixing maternal and paternal genomes in embryos is not only responsible for the evolutionary success of sexual reproduction, but is also a cornerstone of plant breeding. However, once an interesting gene combination is obtained, further genetic mixing is problematic. To rapidly fix genetic information, doubled haploid plants can be produced: haploid embryos having solely the genetic information from one parent are allowed to develop, and chromosome doubling generates fully homozygous plants.

View Article and Find Full Text PDF
Article Synopsis
  • Seeds consist of three distinct tissues: the embryo, endosperm, and maternal tissues, which makes it challenging to study their interactions without precise spatial data.
  • Researchers studied the maize kernel to uncover gene expression profiles at the interfaces between the embryo and endosperm, identifying unique transcriptomic signatures in specific layers.
  • The endosperm adjacent to the scutellum (EAS) is a newly identified tissue that develops shortly after pollination, characterized by genes related to transport and dynamic changes, including cell death and cell recruitment as the embryo grows.
View Article and Find Full Text PDF

The large French research project GENIUS (2012-2019, https://www6.inra.genius-project_eng/ ) provides a good showcase of current genome editing techniques applied to crop plants.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on metabolomic analyses to identify compositional differences between genetically modified (GMO) maize and non-GMO maize, as previous research yielded mixed results regarding transgene effects on grain composition and animal feeding.
  • - Researchers aimed to characterize changes in grain and grain-based diets for two specific GMO lines, one with insect resistance and another with herbicide tolerance, and assess the impact of glyphosate herbicides on these transgenic plants.
  • - Results showed that genetic and environmental factors primarily influenced grain composition, while the effects of transgenes and glyphosate were minimal; some compositional differences were also noted in the rat diets, and data collected is available for public access for further research.
View Article and Find Full Text PDF

The analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR-Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts. CRISPR-Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize.

View Article and Find Full Text PDF

Gilles et al. introduce the technique of haploid induction in plant breeding.

View Article and Find Full Text PDF

Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds.

View Article and Find Full Text PDF

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene () coding for a patatin-like phospholipase A. In all surveyed inducer lines, carries a 4-bp insertion leading to a predicted truncated protein.

View Article and Find Full Text PDF

Carbohydrate import into seeds directly determines seed size and must have been increased through domestication. However, evidence of the domestication of sugar translocation and the identities of seed-filling transporters have been elusive. Maize ZmSWEET4c, as opposed to its sucrose-transporting homologs, mediates transepithelial hexose transport across the basal endosperm transfer layer (BETL), the entry point of nutrients into the seed, and shows signatures indicative of selection during domestication.

View Article and Find Full Text PDF

In angiosperm seeds the embryo is embedded within the endosperm, which is in turn enveloped by the seed coat, making inter-compartmental communication essential for coordinated seed growth. In this context the basic helix-loop-helix domain transcription factor AtZHOUPI (AtZOU) fulfils a key role in both the lysis of the transient endosperm and in embryo cuticle formation in Arabidopsis thaliana. In maize (Zea mays), a cereal with a persistent endosperm, a single gene, ZmZOU, falls into the same phylogenetic clade as AtZOU.

View Article and Find Full Text PDF

In the dicot Arabidopsis thaliana, the B3 transcription factors, ABA-INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) are key regulators of seed maturation. This raises the question of the role of ABI3/FUS3/LEC2 (AFL) proteins in cereals, where not only the embryo but also the persistent endosperm accumulates reserve substances. Among the five ZmAFL genes identified in the maize genome, ZmAFL2 and ZmAFL3/ZmVp1 closely resemble FUS3 and ABI3, respectively, in terms of their sequences, domain structure and gene activity profiles.

View Article and Find Full Text PDF

Small non-coding RNAs are versatile riboregulators that control gene expression at the transcriptional or post-transcriptional level, governing many facets of plant development. Here we present evidence for the existence of a 24 nt small RNA (named small1) that is complementary to the 3' UTR of OCL1 (Outer Cell Layer1), the founding member of the maize HD-ZIP IV gene family encoding plant-specific transcription factors that are mainly involved in epidermis differentiation and specialization. The biogenesis of small1 depends on DICER-like 3 (DCL3), RNA-dependent RNA polymerase 2 (RDR2) and RNA polymerase IV, components that are usually required for RNA-dependent DNA-methylation.

View Article and Find Full Text PDF

The pentatricopeptide repeat (PPR) domain is an RNA binding domain allowing members of the PPR superfamily to participate in post-transcriptional processing of organellar RNA. Loss of PPR8522 from maize (Zea mays) confers an embryo-specific (emb) phenotype. The emb8522 mutation was isolated in an active Mutator (Mu) population and co-segregation analysis revealed that it was tightly linked to a MuDR insertion in the first exon of PPR8522.

View Article and Find Full Text PDF

Plant oils have so far been mostly directed toward food and feed production. Nowadays however, these oils are more and more used as competitive alternatives to mineral hydrocarbon-based products. This increasing demand for vegetable oils has led to a renewed interest in elucidating the metabolism of storage lipids and its regulation in various plant systems.

View Article and Find Full Text PDF

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana.

View Article and Find Full Text PDF

Transcription factors of the plant-specific homeodomain leucine zipper IV (HD-ZIP IV) family have been found from moss to higher plants, and several family members have been associated with epidermis-related expression and/or function. In maize (Zea mays), four of the five characterized HD-ZIP IV family members are expressed specifically in the epidermis, one contributes to trichome development, and target genes of another one are involved in cuticle biosynthesis. Assessing the phylogeny, synteny, gene structure, expression, and regulation of the entire family in maize, 12 novel ZmHDZIV genes were identified in the recently sequenced maize genome.

View Article and Find Full Text PDF

WRINKLED1 (WRI1), a key regulator of seed oil biosynthesis in Arabidopsis (Arabidopsis thaliana), was duplicated during the genome amplification of the cereal ancestor genome 90 million years ago. Both maize (Zea mays) coorthologs ZmWri1a and ZmWri1b show a strong transcriptional induction during the early filling stage of the embryo and complement the reduced fatty acid content of Arabidopsis wri1-4 seeds, suggesting conservation of molecular function. Overexpression of ZmWri1a not only increases the fatty acid content of the mature maize grain but also the content of certain amino acids, of several compounds involved in amino acid biosynthesis, and of two intermediates of the tricarboxylic acid cycle.

View Article and Find Full Text PDF

Epidermis differentiation and maintenance are essential for plant survival. Constant cross-talk between epidermal cells and their immediate environment is at the heart of epidermal cell fate, and regulates epidermis-specific transcription factors. These factors in turn direct epidermal differentiation involving a whole array of epidermis-specific pathways including specialized lipid metabolism necessary to build the protective cuticle layer.

View Article and Find Full Text PDF

OCL1 (OUTER CELL LAYER1) encodes a maize HD-ZIP class IV transcription factor (TF) characterized by the presence of a homeo DNA-binding domain (HD), a dimerization leucine zipper domain (ZIP), and a steroidogenic acute regulatory protein (StAR)-related lipid transfer domain (START) involved in lipid transport in animals but the function of which is still unknown in plants. By combining yeast and plant trans-activation assays, the transcriptional activation domain of OCL1 was localized to 85 amino acids in the N-terminal part of the START domain. Full-length OCL1 devoid of this activation domain is unable to trans-activate a reporter gene under the control of a minimal promoter fused to six repeats of the L1 box, a cis-element present in target genes of HD-ZIP IV TFs in Arabidopsis.

View Article and Find Full Text PDF

Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1.

View Article and Find Full Text PDF

Among the genes controlling the differentiation and maintenance of epidermal cell fate are members of the HD-ZIP IV class family of plant-specific transcription factors, most of which are specifically expressed in the epidermis of tissues. Here, we report the functional analysis of the maize HD-ZIP IV gene OCL4 (outer cell layer 4) via the phenotypic analysis of two insertional mutants, and of OCL4-RNAi transgenic plants. In all three materials, the macrohairs, one of the three types of trichomes present on adult maize leaf blades, developed ectopically at the margin of juvenile and adult leaves.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session87tvbvs9324jtuaj4tihd6hgcnl53269): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once