Publications by authors named "Peter M Rafailov"

Bulk single crystals of WTe were grown by the self-flux method and characterized by X-ray diffraction, polarized micro-Raman spectroscopy, and optical microscopy. All methods revealed a high crystalline quality, thus demonstrating the advantages of the growth method used as a starting base for the synthesis of high-quality 2D materials. In each main scattering configuration, we recorded a series of Raman spectra in different sample orientations achieved by rotating the sample around the incident laser beam.

View Article and Find Full Text PDF

Graphene films were grown by chemical vapor deposition on Cu foil. The obtained samples were characterized by Raman spectroscopy, ellipsometry, X-ray photoelectron spectroscopy and electron back-scatter diffraction. We discuss the time-dependent changes in the samples, estimate the thickness of emerging CuO beneath the graphene and check the orientation-dependent affinity to oxidation of distinct Cu grains, which also governs the manner in which the initial strong Cu-graphene coupling and strain in the graphene lattice is released.

View Article and Find Full Text PDF

We applied Raman spectroscopy to investigate the response to electrochemical doping of the second-order D* band in single-walled carbon nanotube (SWNT) bundles. Our study reveals a dramatic increase of the D* band sensitivity to doping upon moving the laser excitation to the red end of the visible spectrum and beyond. Using the double-resonance scattering model, we show that this phenomenon evidences a second Kohn anomaly in metallic SWNTs, located in the K-point-derived region of the Brillouin zone (BZ), which stems from the Kohn anomaly at the K-point of graphene.

View Article and Find Full Text PDF

We studied the transition from the electrochemical double-layer charging regime to intercalative doping of bundled single-walled carbon nanotubes (SWNT) in KCl and HCl aqueous solution. For this purpose we used high doping levels by applying constant potentials above 1000 mV approaching and slightly exceeding the oxidation potential for Cl(-) ions. At each potential in situ Raman measurements of the radial breathing mode (RBM), the high-energy tangential mode (HEM), and the disorder-induced (D) mode were performed.

View Article and Find Full Text PDF