Publications by authors named "Peter M McCowan"

Purpose: In real-time electronic portal imaging device (EPID) dosimetry applications where on-treatment measured transmission images are compared to an ideal predicted image, ideally a tight tolerance should be set on the quantitative image comparison in order to detect a wide variety of possible delivery errors. However, this is currently not possible due to the appearance of banding artifacts in individual frames of the measured EPID image sequences. The purpose of this work was to investigate simulating banding artifacts in our cine-EPID predicted image sequences to improve matching of individual image frames to the acquired image sequence.

View Article and Find Full Text PDF

SBRT for lung cancer is being rapidly adopted as a treatment option in modern radiotherapy centres. This treatment is one of the most complex in common clinical use, requiring significant expertise and resources. It delivers a high dose per fraction (typically ∼6-30Gy/fraction) over few fractions.

View Article and Find Full Text PDF

Purpose: To report findings from an in vivo dosimetry program implemented for all stereotactic body radiation therapy patients over a 31-month period and discuss the value and challenges of utilizing in vivo electronic portal imaging device (EPID) dosimetry clinically.

Methods And Materials: From December 2013 to July 2016, 117 stereotactic body radiation therapy-volumetric modulated arc therapy patients (100 lung, 15 spine, and 2 liver) underwent 602 EPID-based in vivo dose verification events. A developed model-based dose reconstruction algorithm calculates the 3-dimensional dose distribution to the patient by back-projecting the primary fluence measured by the EPID during treatment.

View Article and Find Full Text PDF

Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.

View Article and Find Full Text PDF

EPID images acquired in cine mode during arc therapy have inaccurate gantry angles recorded in their image headers. In this work, methods were developed to assess the accuracy of the gantry potentiometer for linear accelerators. As well, assessments of the accuracy of other, more accessible, sources of gantry angle information (i.

View Article and Find Full Text PDF

The increasing popularity of intensity-modulated arc therapy (IMAT) treatments requires specifically designed linac quality assurance (QA) programs. Gantry angle is one of the parameters that has a major effect on the outcome of IMAT treatments since dose reconstruction for patient-specific QA relies on the gantry angle; therefore, it is essential to ensure its accuracy for correct delivery of the prescribed dose. In this study, a simple measurement method and algorithm are presented for QA of gantry angle measurements based on integrated EPID images acquired at distinct gantry angles and cine EPID images during an entire 360° arc.

View Article and Find Full Text PDF

Purpose: Electronic portal imaging devices (EPIDs) have been studied and used for pretreatment and in-vivo dosimetry applications for many years. The application of EPIDs for dosimetry in arc treatments requires accurate characterization of the mechanical sag of the EPID and gantry during rotation. Several studies have investigated the effects of gravity on the sag of these systems but each have limitations.

View Article and Find Full Text PDF