Publications by authors named "Peter M Kloetzel"

Proteasome generates spliced peptides by ligating two distant cleavage products in a reverse proteolysis reaction. The observation that CD8+ T cells recognizing a spliced peptide induced T cell rejection in a melanoma patient following adoptive T cell transfer (ATT), raised some hopes with regard to the general therapeutic and immune relevance of spliced peptides. Concomitantly, the identification of spliced peptides was also the start of a controversy with respect to their frequency, abundancy and their therapeutic applicability.

View Article and Find Full Text PDF

Background: Adoptive transfer of engineered T cells has shown remarkable success in B-cell malignancies. However, the most common strategy of targeting lineage-specific antigens can lead to undesirable side effects. Also, a substantial fraction of patients have refractory disease.

View Article and Find Full Text PDF

Proteasome-catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by T cell receptor (TCR)-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm, TCRs were generated against putative KRAS- and RAC2-derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy.

View Article and Find Full Text PDF

Mass spectrometry (MS) is today one of the most important analytical techniques in biosciences. The development of electro spray ionization (ESI) as a gentle method, in which molecules are not destroyed, has revolutionized the analytic of peptides. MS is an ideal technique for detection and analysis of peptides generated by purified 20S proteasomes in in vitro experiments.

View Article and Find Full Text PDF

Proteasome-catalyzed peptide splicing (PCPS) generates peptides that are presented by MHC class I molecules, but because their identification is challenging, the immunological relevance of spliced peptides remains unclear. Here, we developed a reverse immunology-based multi-level approach to identify proteasome-generated spliced epitopes. Applying this strategy to a murine Listeria monocytogenes infection model, we identified two spliced epitopes within the secreted bacterial phospholipase PlcB that primed antigen-specific CD8 T cells in L.

View Article and Find Full Text PDF

The immunoproteasome (iP) represents a specialized type of proteasomes, which plays an important role in the clearance of oxidant-damaged proteins under inflammatory and pathological conditions determining the outcome of various diseases. In Alzheimer's disease (AD)-like APPPS1 mice Aβ-deposition is paralleled by iP upregulation, most likely mediated through type I interferon induction. To define the impact of increased iP expression we crossed APPPS1 mice with mice deficient in the iP subunit LMP7 resulting in impaired iP function.

View Article and Find Full Text PDF

Osteopontin is a pleiotropic cytokine that is involved in several diseases including multiple sclerosis. Secreted osteopontin is cleaved by few known proteases, modulating its pro-inflammatory activities. Here we show by in vitro experiments that secreted osteopontin can be processed by extracellular proteasomes, thereby producing fragments with novel chemotactic activity.

View Article and Find Full Text PDF

The proteasome generates the epitopes presented on human leukocyte antigen (HLA) class I molecules that elicit CD8 T cell responses. Reports of proteasome-generated spliced epitopes exist, but they have been regarded as rare events. Here, however, we show that the proteasome-generated spliced peptide pool accounts for one-third of the entire HLA class I immunopeptidome in terms of diversity and one-fourth in terms of abundance.

View Article and Find Full Text PDF

By changing the relative abundance of generated antigenic peptides through alterations in the proteolytic activity, interferon (IFN)-γ-induced immunoproteasomes influence the outcome of CD8 cytotoxic T lymphocyte responses. In the present study, we investigated the effects of hepatitis C virus (HCV) infection on IFN-γ-induced immunoproteasome expression using a HCV infection cell culture system. We found that, although IFN-γ induced the transcriptional expression of mRNAs encoding the β1i/LMP2, β2i/MECL-1 and β5i/LMP7 immunoproteasome subunits, the formation of immunoproteasomes was significantly suppressed in HCV-infected cells.

View Article and Find Full Text PDF

Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope.

View Article and Find Full Text PDF

Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine' immunogenicity.

View Article and Find Full Text PDF

Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing.

View Article and Find Full Text PDF

CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide.

View Article and Find Full Text PDF

MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied.

View Article and Find Full Text PDF

Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics.

View Article and Find Full Text PDF

The proteasome is the core of the ubiquitin-proteasome system and is involved in synaptic protein metabolism. The incorporation of three inducible immuno-subunits into the proteasome results in the generation of the so-called immunoproteasome, which is endowed of pathophysiological functions related to immunity and inflammation. In healthy human brain, the expression of the key catalytic β5i subunit of the immunoproteasome is almost absent, while it is induced in the epileptogenic foci surgically resected from patients with pharmaco-resistant seizures, including temporal lobe epilepsy.

View Article and Find Full Text PDF

Proteolysis is the general term to describe the process of protein degradation into peptides. Proteasomes are the main actors in cellular proteolysis, and their activity can be measured in in vitro digestion experiments. However, in vivo proteolysis can be different than what is measured in these experiments if other proteases participate or if proteasomal activity is different in vivo.

View Article and Find Full Text PDF

Inhibition of the proteasome offers many therapeutic possibilities in inflammation as well as in neoplastic diseases. However, clinical use of proteasome inhibitors is limited by the development of resistance or severe side effects. In our study we characterized the anti-tumor properties of the novel proteasome inhibitor BSc2118.

View Article and Find Full Text PDF

Immunoproteasomes are considered to be optimised to process Ags and to alter the peptide repertoire by generating a qualitatively different set of MHC class I epitopes. Whether the immunoproteasome at the biochemical level, influence the quality rather than the quantity of the immuno-genic peptide pool is still unclear. Here, we quantified the cleavage-site usage by human standard- and immunoproteasomes, and proteasomes from immuno-subunit-deficient mice, as well as the peptides generated from model polypeptides.

View Article and Find Full Text PDF

Proteasomes are key proteases involved in a variety of processes ranging from the clearance of damaged proteins to the presentation of antigens to CD8+ T-lymphocytes. Which cleavage sites are used within the target proteins and how fast these proteins are degraded have a profound impact on immune system function and many cellular metabolic processes. The regulation of proteasome activity involves different mechanisms, such as the substitution of the catalytic subunits, the binding of regulatory complexes to proteasome gates and the proteasome conformational modifications triggered by the target protein itself.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) is critical for the regulation of many intracellular processes necessary for cell function and survival. The absolute requirement of the UPS for the maintenance of protein homeostasis and thereby for the regulation of protein quality control is reflected by the fact that deviation of proteasome function from the norm was reported in cardiovascular pathologies. Inflammation is a major factor contributing to cardiac pathology.

View Article and Find Full Text PDF

Objective: Dysregulation of proteasome subunit β1i expression has been shown in total blood mononuclear cells (PBMC) from patients with primary Sjögren syndrome (pSS), a B cell-driven systemic autoimmune disorder.

Methods: Proteasome activation was investigated in sorted blood cells from patients with pSS and controls by measuring transcript levels of constitutive (β1/β2/β5) and corresponding immunoproteasome catalytic subunits (β1i/β2i/β5i) using real-time PCR. At protein level, β1i protein expression was analyzed by immunoblotting.

View Article and Find Full Text PDF

Mass spectrometry (MS) is today one of the most important analytical techniques in biosciences. The development of electro spray ionization (ESI) as a gentle ionization method, in which molecules are not destroyed, has revolutionized the analytic of peptides. MS is an ideal technique for detection and analysis of peptides generated by in vitro experiments using purified 20S proteasomes.

View Article and Find Full Text PDF