Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery and basic research. However, established technologies such as chimeric antigen receptors can only detect immobilized antigens, have limited output scope and lack built-in drug control. Here we engineer synthetic G-protein-coupled receptors (GPCRs) that are capable of driving a wide range of native or non-native cellular processes in response to a user-defined antigen.
View Article and Find Full Text PDFEpilepsy is a prevalent disorder involving neuronal network hyperexcitability, yet existing therapeutic strategies often fail to provide optimal patient outcomes. Chemogenetic approaches, where exogenous receptors are expressed in defined brain areas and specifically activated by selective agonists, are appealing methods to constrain overactive neuronal activity. We developed BARNI (Bradanicline- and Acetylcholine-activated Receptor for Neuronal Inhibition), an engineered channel comprised of the α7 nicotinic acetylcholine receptor ligand-binding domain coupled to an α1 glycine receptor anion pore domain.
View Article and Find Full Text PDFTechnological advancements have facilitated the implementation of realistic, terrestrial-based complex 33-beam galactic cosmic radiation simulations (GCR Sim) to now probe central nervous system functionality. This work expands considerably on prior, simplified GCR simulations, yielding new insights into responses of male and female mice exposed to 40-50 cGy acute or chronic radiations relevant to deep space travel. Results of the object in updated location task suggested that exposure to acute or chronic GCR Sim induced persistent impairments in hippocampus-dependent memory formation and reconsolidation in female mice that did not manifest robustly in irradiated male mice.
View Article and Find Full Text PDFEpilepsy Curr
October 2021
Epileptic seizures are associated with excessive neuronal spiking. Perisomatic γ-aminobutyric acid (GABA)ergic interneurons specifically innervate the subcellular domains of postsynaptic excitatory cells that are critical for spike generation. With a revolution in transcriptomics-based cell taxonomy driving the development of novel transgenic mouse lines, selectively monitoring and modulating previously elusive interneuron types is becoming increasingly feasible.
View Article and Find Full Text PDFLocomotor speed is a basic input used to calculate one’s position, but where this signal comes from is unclear. We identified neurons in the supramammillary nucleus (SuM) of the rodent hypothalamus that were highly correlated with future locomotor speed and reliably drove locomotion when activated. Robust locomotion control was specifically identified in (substance P)–expressing (SuM) neurons, the activation of which selectively controlled the activity of speed-modulated hippocampal neurons.
View Article and Find Full Text PDFThe axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest.
View Article and Find Full Text PDFA recognized risk of long-duration space travel arises from the elevated exposure astronauts face from galactic cosmic radiation (GCR), which is composed of a diverse array of energetic particles. There is now abundant evidence that exposures to many different charged particle GCR components within acute time frames are sufficient to induce central nervous system deficits that span from the molecular to the whole animal behavioral scale. Enhanced spacecraft shielding can lessen exposures to charged particle GCR components, but may conversely elevate neutron radiation levels.
View Article and Find Full Text PDFInterneurons expressing cholecystokinin (CCK) and parvalbumin (PV) constitute two key GABAergic controllers of hippocampal pyramidal cell output. Although the temporally precise and millisecond-scale inhibitory regulation of neuronal ensembles delivered by PV interneurons is well established, the in vivo recruitment patterns of CCK-expressing basket cell (BC) populations has remained unknown. We show in the CA1 of the mouse hippocampus that the activity of CCK BCs inversely scales with both PV and pyramidal cell activity at the behaviorally relevant timescales of seconds.
View Article and Find Full Text PDFGalactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system.
View Article and Find Full Text PDFAldosterone-producing zona glomerulosa (zG) cells of the adrenal gland arrange in distinct multi-cellular rosettes that provide a structural framework for adrenal cortex morphogenesis and plasticity. Whether this cyto-architecture also plays functional roles in signaling remains unexplored. To determine if structure informs function, we generated mice with zG-specific expression of GCaMP3 and imaged zG cells within their native rosette structure.
View Article and Find Full Text PDFRadiotherapy, surgery and the chemotherapeutic agent temozolomide (TMZ) are frontline treatments for glioblastoma multiforme (GBM). However beneficial, GBM treatments nevertheless cause anxiety or depression in nearly 50% of patients. To further understand the basis of these neurological complications, we investigated the effects of combined radiotherapy and TMZ chemotherapy (combined treatment) on neurological impairments using a mouse model.
View Article and Find Full Text PDFAs NASA prepares for a mission to Mars, concerns regarding the health risks associated with deep space radiation exposure have emerged. Until now, the impacts of such exposures have only been studied in animals after acute exposures, using dose rates ∼1.5×10 higher than those actually encountered in space.
View Article and Find Full Text PDFThe prefrontal cortex controls food reward seeking and ingestion, playing important roles in directing attention, regulating motivation towards reward pursuit, and the assignment of reward salience and value. The cell types that mediate these behavioral functions, however, are not well described. We report here that optogenetic activation of vasoactive peptide expressing (VIP) interneurons in both the infralimbic (IL) and prelimbic (PL) divisions of the medial prefrontal cortex in mice is sufficient to reduce acute, binge-like intake of high calorie palatable food in the absence of any effect on low calorie rodent chow intake in the sated animal.
View Article and Find Full Text PDFMaintenance of a low intracellular Cl concentration ([Cl]) is critical for enabling inhibitory neuronal responses to GABA receptor-mediated signaling. Cl transporters, including KCC2, and extracellular impermeant anions ([A]) of the extracellular matrix are both proposed to be important regulators of [Cl] Neurons of the reticular thalamic (RT) nucleus express reduced levels of KCC2, indicating that GABAergic signaling may produce excitation in RT neurons. However, by performing perforated patch recordings and calcium imaging experiments in rats (male and female), we find that [Cl] remains relatively low in RT neurons.
View Article and Find Full Text PDFZona glomerulosa cells (ZG) of the adrenal gland constantly integrate fluctuating ionic, hormonal and paracrine signals to control the synthesis and secretion of aldosterone. These signals modulate Ca levels, which provide the critical second messenger to drive steroid hormone production. Angiotensin II is a hormone known to modulate the activity of voltage-dependent L- and T-type Ca channels that are expressed on the plasma membrane of ZG cells in many species.
View Article and Find Full Text PDFNeonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function.
View Article and Find Full Text PDFTropomyosin-related kinase receptor B (TrkB) activation has been implicated in epileptogenesis. We investigated hippocampal levels of phosphorylated TrkB (p-TrkB) and potential antiepileptogenic actions of the tyrosine kinase inhibitor, lestaurtinib (CEP-701) in postnatal day 10 (P10) rat pups following hypoxic seizures (HS). Hippocampal expression of p-TrkB over total TrkB protein levels were assessed by immunoblot at 6, 12, or 24 h post-HS, and revealed a statistically significant and transient 1.
View Article and Find Full Text PDFPurpose: To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits.
Methods: Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses).
Homeostatic plasticity is characterized by compensatory changes in synaptic strength and intrinsic membrane properties in response to chronic changes in neuronal activity. Neonatal seizures are a naturally occurring source of neuronal overactivation and can lead to long-term epilepsy and cognitive deficits. Using a rodent model of hypoxia-induced neonatal seizures that results in a persistent increase in AMPA receptor (AMPAR) function in hippocampal CA1 pyramidal neurons, we aimed to determine whether there was any evidence of an opposing endogenous homeostatic antiepileptic response.
View Article and Find Full Text PDFNeonatal seizures can lead to later life epilepsy and neurobehavioral deficits, and there are no treatments to prevent these sequelae. We showed previously that hypoxia-induced seizures in a neonatal rat model induce rapid phosphorylation of serine-831 (S831) and Serine 845 (S845) sites of the AMPA receptor GluR1 subunit and later neuronal hyperexcitability and epilepsy, suggesting that seizure-induced posttranslational modifications may represent a novel therapeutic target. To unambiguously assess the contribution of these sites, we examined seizure susceptibility in wild-type mice versus transgenic knock-in mice with deficits in GluR1 S831 and S845 phosphorylation [GluR1 double-phosphomutant (GluR1 DPM) mice].
View Article and Find Full Text PDFEarly life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism.
View Article and Find Full Text PDFPurpose: To study the development of epilepsy following hypoxia-induced neonatal seizures in Long-Evans rats and to establish the presence of spontaneous seizures in this model of early life seizures.
Methods: Long-Evans rat pups were subjected to hypoxia-induced neonatal seizures at postnatal day 10 (P10). Epidural cortical electroencephalography (EEG) and hippocampal depth electrodes were used to detect the presence of seizures in later adulthood (> P60).
Chronic hyperoxia during the first 1-4 postnatal weeks attenuates the hypoxic ventilatory response (HVR) subsequently measured in adult rats. Rather than focusing on this long-lasting plasticity, the present study considered the influence of hyperoxia on respiratory control during the neonatal period. Sprague-Dawley rats were born and raised in 60% O2 until studied at postnatal ages (P) of 4, 6-7, or 13-14 days.
View Article and Find Full Text PDF