Publications by authors named "Peter M Graham"

Nickel monocarbonyl species with Ni(I) and Ni(0) have been synthesized and fully characterized by employing an PNP-Ph pincer ligand having a -C(Ph)- bridge moiety to tether two aromatic rings. To see the effect of the bridge moiety, these complexes were structurally compared with the previously studied nickel complexes supported by PNP and PNP-Me ligands and methylation of the nickel carbonyl species was particularly investigated. Since a Ni(I)-CO species is known to be one of the key intermediates during the C-C coupling reaction to give an acetyl species, according to the paramagnetic mechanism of acetyl coenzyme A synthase (ACS), their reactivity toward MeI has been examined.

View Article and Find Full Text PDF

A dinickel(0)-N complex, stabilized with a rigid acridane-based PNP pincer ligand, was studied for its ability to activate C(sp)-H and C(sp)-O bonds. Stabilized by a Ni-μ-N-Na interaction, it activates C-H bonds of unfunctionalized arenes, affording nickel-aryl and nickel-hydride products. Concomitantly, two sodium cations get reduced to Na(0), which was identified and quantified by several methods.

View Article and Find Full Text PDF

Thermolysis of Cp*W(NO)(CH2CMe3)(eta(3)-CH2CHCHMe) (1) at ambient temperatures leads to the loss of neopentane and the formation of the eta(2)-diene intermediate, Cp*W(NO)(eta(2)-CH2=CHCH=CH2) (A), which has been isolated as its 18e PMe3 adduct. In the presence of linear alkanes, A effects C-H activations of the hydrocarbons exclusively at their terminal carbons and forms 18e Cp*W(NO)(n-alkyl)(eta(3)-CH2CHCHMe) complexes. Similarly, treatments of 1 with methylcyclohexane, chloropentane, diethyl ether, and triethylamine all lead to the corresponding terminal C-H activation products.

View Article and Find Full Text PDF

A series of pyridine complexes are prepared of the general form TpW(NO)(PMe3)(pyr) where pyr is either pyridine or a substituted pyridine. Depending on substitution pattern, the pyridine can be either N- or eta2-coordinated, and the role of the pyridine substituents and metal oxidation state in determining this equilibrium is explored. For eta2-pyridine complexes, the substituent pattern and solubility characteristics also determine the ratio of coordination diastereomers.

View Article and Find Full Text PDF

Molybdenacyclobutane complexes can be prepared by reaction of Cp*Mo(NO)(=CHCMe3) (formed spontaneously by loss of neopentane from Cp*Mo(NO)(CH2CMe3)2 (1) under ambient conditions) with cyclic olefins, including cyclopentene, cycloheptene, and cyclooctene. The cyclopentene metallacyclobutane orients the metallacycle bridgehead protons cis to each other. A trans arrangement is observed for the cyclooctene congener, and both cis and trans orientations occur for the cycloheptene species.

View Article and Find Full Text PDF

The isoquinuclidine (2-azabicyclo[2.2.2]octane) core is found in numerous molecules of biological and medicinal importance, including the widely investigated Iboga alkaloids and their related bisindole Cantharanthus alkaloids (Sundberg, R.

View Article and Find Full Text PDF