Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, with relapse being a major obstacle to successful treatment. Our understanding of the mechanisms driving chemotherapy resistance and ultimately relapse in leukemia remains incomplete. Herein, we investigate the impact of the tumor microenvironment on leukemia cell drug responses using human plasma-like media (HPLM), designed to mimic physiological conditions more accurately .
View Article and Find Full Text PDFThe effective prophylaxis and treatment of central nervous system (CNS) involvement in acute lymphoblastic leukaemia (ALL) remains a significant clinical challenge. Developing novel and more effective CNS-directed therapies has been hampered, in part, by our limited understanding of the leukaemia niche in the CNS relative to the bone marrow. Accordingly, defining the molecular and cellular components critical for the establishment and maintenance of the CNS leukaemia niche may lead to new therapeutic opportunities.
View Article and Find Full Text PDFSarcomas are difficult to treat and the therapy, even when effective, is associated with long-term and life-threatening side effects. In addition, the treatment regimens for many sarcomas, including Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, are relatively unchanged over the past two decades, indicating a critical lack of progress. Although differentiation-based therapies are used for the treatment of some cancers, the application of this approach to sarcomas has proven challenging.
View Article and Find Full Text PDFCentral nervous system (CNS) relapse is a significant cause of treatment failure among patients with acute lymphoblastic leukemia. In prior work we found that the meninges, the thin layer of tissue that covers the brain and spinal cord, harbor leukemia cells in the CNS. Importantly, direct interactions between leukemia and meningeal cells enabled leukemia chemoresistance.
View Article and Find Full Text PDFThe addition of molecularly targeted therapies to current chemotherapy regimens may improve acute lymphoblastic leukemia (ALL) outcomes and reduce acute and late toxicities. Checkpoint kinase 1 (CHK1) orchestrates cell cycle checkpoint control in the setting of DNA damage. CHK1 is expressed in both T- and B-ALL and represents a promising therapeutic target.
View Article and Find Full Text PDFLeukapheresis (LA) in pediatric leukemia is performed for leukostasis, a life-threatening emergency in the setting of extremely increased blast cell counts. The authors aimed to assess the epidemiology of pediatric leukemia who received LA. The authors reviewed US nationally representative admission records of patients less than 20 years of age in the Kids' Inpatient Database for the years 2000, 2003, 2006, 2009, 2012, and 2016.
View Article and Find Full Text PDFRibonucleotide reductase (RNR), which is a heterodimeric tetramer composed of RRM1 and RRM2 subunits, is the rate-limiting enzyme in the synthesis of deoxyribonucleoside triphosphates (dNTPs) and essential for both DNA replication and the repair of DNA damage. The activity of RNR is coordinated with the cell cycle and regulated by fluctuations in the level of the RRM2 subunit. Multiple cancer types, including Ewing sarcoma tumors, are sensitive to inhibitors of RNR or a reduction in the levels of either the RRM1 or RRM2 subunits of RNR.
View Article and Find Full Text PDFBackground: Obesity is a risk factor for many adulthood cancers, but its role in childhood, adolescent, and young adult (AYA) cancer is unknown. Childhood and AYA acute lymphoblastic leukemia (ALL) incidence and obesity prevalence have shown concurrent increases. We sought to identify whether obesity may be a risk factor for childhood and AYA ALL.
View Article and Find Full Text PDFEpstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+ DLBCL) in pediatrics most commonly occurs as an iatrogenic immunodeficiency-associated lymphoproliferative disease. We report an 18-year-old female individual with refractory systemic juvenile idiopathic arthritis, treated with multiple immunosuppressive agents, who was diagnosed with stage III, EBV+ DLBCL. The patient achieved sustained complete remission after 4 weekly doses of rituximab monotherapy and reduction of immunosuppression.
View Article and Find Full Text PDFCentral nervous system (CNS) relapse is a common cause of treatment failure in patients with acute lymphoblastic leukaemia (ALL) despite current CNS-directed therapies that are also associated with significant short- and long-term toxicities. Herein, we showed that leukaemia cells exhibit decreased proliferation, elevated reactive oxygen species (ROS) and increased cell death in cerebral spinal fluid (CSF) both in vitro and in vivo. However, interactions between leukaemia and meningeal cells mitigated these adverse effects.
View Article and Find Full Text PDFProtection from acute lymphoblastic leukemia relapse in the central nervous system (CNS) is crucial to survival and quality of life for leukemia patients. Current CNS-directed therapies cause significant toxicities and are only partially effective. Moreover, the impact of the CNS microenvironment on leukemia biology is poorly understood.
View Article and Find Full Text PDFThe limited delivery of chemotherapy agents to cancer cells and the nonspecific action of these agents are significant challenges in oncology. We have previously developed a customizable drug delivery and activation system in which a nucleic acid functionalized gold nanoparticle (Au-NP) delivers a drug that is selectively activated within a cancer cell by the presence of an mRNA unique to the cancer cell. The amount of drug released from sequestration to the Au-NP is determined by both the presence and the abundance of the cancer cell specific mRNA in a cell.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is the most common cancer in children. While survival rates for ALL have improved, central nervous system (CNS) relapse remains a significant cause of treatment failure and treatment-related morbidity. Accordingly, there is a need to identify more efficacious and less toxic CNS-directed leukemia therapies.
View Article and Find Full Text PDFWe describe a customizable approach to cancer therapy in which a gold nanoparticle (Au-NP) delivers a drug that is selectively activated within the cancer cell by the presence of an mRNA unique to the cancer cell. Fundamental to this approach is the observation that the amount of drug released from the Au-NP is proportional to both the presence and abundance of the cancer cell specific mRNA in a cell. As proof-of-principle, we demonstrate both the efficient delivery and selective release of the multi-kinase inhibitor dasatinib from Au-NPs in leukemia cells with resulting efficacy in vitro and in vivo.
View Article and Find Full Text PDFA pair of synthetic approaches to linear dasatinib-DNA conjugates via click chemistry are described. The first approach involves the reaction of excess azido dasatinib derivative with 5'-(5-hexynyl)-tagged DNAs, and the second involves the reaction of excess alkynyl-linked dasatinib with 5'-azido-tagged DNA. The second approach using alkynyl-derived dasatinib and 5'-azido-tagged DNA yielded the corresponding dasatinib-DNA conjugates in higher yield (47% versus 10-33% for the first approach).
View Article and Find Full Text PDFThe c-KIT receptor tyrosine kinase is constitutively activated and oncogenic in the majority of gastrointestinal stromal tumors. The identification of selective inhibitors of c-KIT, such as imatinib, has provided a novel therapeutic approach in the treatment of this chemotherapy refractory tumor. However, despite the clinical importance of these findings and the potential it provides as a model system for understanding targeted therapy, this approach has not yielded curative outcomes in most patients, and the biochemical pathways connecting c-KIT inhibition to cell death are not completely understood.
View Article and Find Full Text PDFGroup II introns are mobile genetic elements that have been implicated as agents of genetic diversity, and serve as important model systems for investigating RNA catalysis and pre-mRNA splicing. In the absence of an atomic-resolution structure of the intron, detailed understanding of its catalytic mechanism has remained elusive. Previous identification of a divalent metal ion stabilizing the leaving group in both splicing steps suggested that the group II intron may employ a "two-metal ion" mechanism, a catalytic strategy used by a number of protein phosphoester transfer enzymes.
View Article and Find Full Text PDFThe 2'-hydroxyl group contributes inextricably to the functional behavior of many RNA molecules, fulfilling numerous essential chemical roles. To assess how hydroxyl groups impart functional behavior to RNA, we developed a series of experimental strategies using an array of nucleoside analogs. These strategies provide the means to investigate whether a hydroxyl group influences function directly (via hydrogen bonding or metal ion coordination), indirectly (via space-filling capacity, inductive effects, and sugar conformation), or through interactions with solvent.
View Article and Find Full Text PDF