Publications by authors named "Peter M Celliers"

This report details the analyses and related uncertainties in measuring longitudinal-stress-density paths in indirect laser-driven ramp equation-of-state (EOS) experiments [Smith et al., Nat. Astron.

View Article and Find Full Text PDF

Two variants of optical imaging velocimetry, specifically the one-dimensional streaked line-imaging and the two-dimensional time-resolved area-imaging versions of the Velocity Interferometer System for Any Reflector (VISAR), have become important diagnostics in high energy density sciences, including inertial confinement fusion and dynamic compression of condensed matter. Here, we give a brief review of the historical development of these techniques, then describe the current implementations at major high energy density (HED) facilities worldwide, including the OMEGA Laser Facility and the National Ignition Facility. We illustrate the versatility and power of these techniques by reviewing diverse applications of imaging VISARs for gas-gun and laser-driven dynamic compression experiments for materials science, shock physics, condensed matter physics, chemical physics, plasma physics, planetary science and astronomy, as well as a broad range of HED experiments and laser-driven inertial confinement fusion research.

View Article and Find Full Text PDF

Triple bonding in the nitrogen molecule (N_{2}) is among the strongest chemical bonds with a dissociation enthalpy of 9.8  eV/molecule. Nitrogen is therefore an excellent test bed for theoretical and numerical methods aimed at understanding how bonding evolves under the influence of the extreme pressures and temperatures of the warm dense matter regime.

View Article and Find Full Text PDF
Article Synopsis
  • The text outlines a high precision interferometer system designed to measure how pressure affects the refractive index and dispersion of materials within a diamond anvil cell (DAC).
  • Advances in techniques, such as sample preparation and data analysis, have led to a significant improvement in measurement accuracy, confirmed with an air sample.
  • The findings highlight the potential for deeper insights into the electronic structure of substances like liquid water and ice VI at high pressures, with specific new data gathered at pressures up to 2.21 GPa.
View Article and Find Full Text PDF

Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF).

View Article and Find Full Text PDF

In their comment, Desjarlais claim that a small temperature drop occurs after isentropic compression of fluid deuterium through the first-order insulator-metal transition. We show that their calculations do not correspond to the experimental thermodynamic path, and that thermodynamic integrations with parameters from first-principles calculations produce results in agreement with our original estimate of the temperature drop.

View Article and Find Full Text PDF

Dense fluid metallic hydrogen occupies the interiors of Jupiter, Saturn, and many extrasolar planets, where pressures reach millions of atmospheres. Planetary structure models must describe accurately the transition from the outer molecular envelopes to the interior metallic regions. We report optical measurements of dynamically compressed fluid deuterium to 600 gigapascals (GPa) that reveal an increasing refractive index, the onset of absorption of visible light near 150 GPa, and a transition to metal-like reflectivity (exceeding 30%) near 200 GPa, all at temperatures below 2000 kelvin.

View Article and Find Full Text PDF

Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.

View Article and Find Full Text PDF

Materials can be experimentally characterized to terapascal pressures by sending a laser-induced shock wave through a sample that is precompressed inside a diamond-anvil cell. This combination of static and dynamic compression methods has been experimentally demonstrated and ultimately provides access to the 10- to 100-TPa (0.1-1 Gbar) pressure range that is relevant to planetary science, testing first-principles theories of condensed matter, and experimentally studying a new regime of chemical bonding.

View Article and Find Full Text PDF

A laser-produced x-ray drive was used to shocklessly compress solid aluminum to a peak longitudinal stress of 110 GPa within 10 ns. Interface velocities versus time for multiple sample thicknesses were measured and converted to stress density (Px-rho) using an iterative Lagrangian analysis. These are the fastest shockless compression Px(rho) results reported to date, and are stiffer than models that have been benchmarked against both static and shock-wave experiments.

View Article and Find Full Text PDF

Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semiconductor<-->electronic conductor transition in water, and is found at pressures above approximately 130 GPa for single-shocked samples precompressed to 1 GPa. Our results indicate that conductivity in the deep interior of "icy" giant planets is greater than realized previously because of an additional contribution from electrons.

View Article and Find Full Text PDF

The second-harmonic signal in collagen, even in highly organized samples such as rat tail tendon fascicles, varies significantly with position. Previous studies suggest that this variability may be due to the parallel and antiparallel orientation of neighboring collagen fibrils. We applied high-resolution second-harmonic generation microscopy to confirm this hypothesis.

View Article and Find Full Text PDF

Collagen possesses a strong second-order nonlinear susceptibility, a nonlinear optical property characterized by second harmonic generation in the presence of intense laser beams. We present a new technique involving polarization modulation of an ultra-short pulse laser beam that can simultaneously determine collagen fiber orientation and a parameter related to the second-order nonlinear susceptibility. We demonstrate the ability to discriminate among different patterns of fibrillar orientation, as exemplified by tendon, fascia, cornea, and successive lamellar rings in an intervertebral disc.

View Article and Find Full Text PDF