Great musicians have a unique style and, with training, humans can learn to distinguish between these styles. What differences between performers enable us to make such judgements? We investigate this question by building a machine learning model that predicts performer identity from data extracted automatically from an audio recording. Such a model could be trained on all kinds of musical features, but here we focus specifically on rhythm, which (unlike harmony, melody and timbre) is relevant for any musical instrument.
View Article and Find Full Text PDFAesthetic preference is intricately linked to learning and creativity. Previous studies have largely examined the perception of novelty in terms of pleasantness and the generation of novelty via creativity separately. The current study examines the connection between perception and generation of novelty in music; specifically, we investigated how pleasantness judgements and brain responses to musical notes of varying probability (estimated by a computational model of auditory expectation) are linked to learning and creativity.
View Article and Find Full Text PDFPrevious psychological studies have shown that musical consonance is not only determined by the frequency ratios between tones, but also by the frequency spectra of those tones. However, these prior studies used artificial tones, specifically tones built from a small number of pure tones, which do not match the acoustic complexity of real musical instruments. The present experiment therefore investigates tones recorded from a real musical instrument, the Westerkerk Carillon, conducting a "dense rating" experiment where participants (N = 113) rated musical intervals drawn from the continuous range 0-15 semitones.
View Article and Find Full Text PDFThe phenomenon of musical consonance is an essential feature in diverse musical styles. The traditional belief, supported by centuries of Western music theory and psychological studies, is that consonance derives from simple (harmonic) frequency ratios between tones and is insensitive to timbre. Here we show through five large-scale behavioral studies, comprising 235,440 human judgments from US and South Korean populations, that harmonic consonance preferences can be reshaped by timbral manipulations, even as far as to induce preferences for inharmonic intervals.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2024
Expectation is crucial for our enjoyment of music, yet the underlying generative mechanisms remain unclear. While sensory models derive predictions based on local acoustic information in the auditory signal, cognitive models assume abstract knowledge of music structure acquired over the long term. To evaluate these two contrasting mechanisms, we compared simulations from four computational models of musical expectancy against subjective expectancy and pleasantness ratings of over 1000 chords sampled from 739 US Billboard pop songs.
View Article and Find Full Text PDFSpeech and song have been transmitted orally for countless human generations, changing over time under the influence of biological, cognitive, and cultural pressures. Cross-cultural regularities and diversities in human song are thought to emerge from this transmission process, but testing how underlying mechanisms contribute to musical structures remains a key challenge. Here, we introduce an automatic online pipeline that streamlines large-scale cultural transmission experiments using a sophisticated and naturalistic modality: singing.
View Article and Find Full Text PDFSensorimotor synchronization (SMS), the rhythmic coordination of perception and action, is a fundamental human skill that supports many behaviors, including music and dance (Repp, 2005; Repp & Su, 2013). Traditionally, SMS experiments have been performed in the laboratory using finger tapping paradigms, and have required equipment with high temporal fidelity to capture the asynchronies between the time of the tap and the corresponding cue event. Thus, SMS is particularly challenging to study with online research, where variability in participants' hardware and software can introduce uncontrolled latency and jitter into recordings.
View Article and Find Full Text PDFSavage et al. and Mehr et al. provide well-substantiated arguments that the evolution of musicality was shaped by adaptive functions of social bonding and credible signalling.
View Article and Find Full Text PDFPLoS Comput Biol
November 2020
Statistical learning and probabilistic prediction are fundamental processes in auditory cognition. A prominent computational model of these processes is Prediction by Partial Matching (PPM), a variable-order Markov model that learns by internalizing n-grams from training sequences. However, PPM has limitations as a cognitive model: in particular, it has a perfect memory that weights all historic observations equally, which is inconsistent with memory capacity constraints and recency effects observed in human cognition.
View Article and Find Full Text PDFIt is still a matter of debate whether visual aids improve learning of music. In a multisession study, we investigated the neural signatures of novel music sequence learning with or without aids (auditory-only: AO, audiovisual: AV). During three training sessions on three separate days, participants (nonmusicians) reproduced (note by note on a keyboard) melodic sequences generated by an artificial musical grammar.
View Article and Find Full Text PDFThe ability to silently hear music in the mind has been argued to be fundamental to musicality. Objective measurements of this subjective imagery experience are needed if this link between imagery ability and musicality is to be investigated. However, previous tests of musical imagery either rely on self-report, rely on melodic memory, or do not cater in range of abilities.
View Article and Find Full Text PDFSimultaneous consonance is a salient perceptual phenomenon corresponding to the perceived pleasantness of simultaneously sounding musical tones. Various competing theories of consonance have been proposed over the centuries, but recently a consensus has developed that simultaneous consonance is primarily driven by harmonicity perception. Here we question this view, substantiating our argument by critically reviewing historic consonance research from a broad variety of disciplines, reanalyzing consonance perception data from 4 previous behavioral studies representing more than 500 participants, and modeling three Western musical corpora representing more than 100,000 compositions.
View Article and Find Full Text PDFListening to music often evokes intense emotions [1, 2]. Recent research suggests that musical pleasure comes from positive reward prediction errors, which arise when what is heard proves to be better than expected [3]. Central to this view is the engagement of the nucleus accumbens-a brain region that processes reward expectations-to pleasurable music and surprising musical events [4-8].
View Article and Find Full Text PDFHuman creativity is intricately linked to acquired knowledge. However, to date learning a new musical style and subsequent musical creativity have largely been studied in isolation. We introduced a novel experimental paradigm combining behavioural, electrophysiological, and computational methods, to examine the neural correlates of unfamiliar music learning, and to investigate how neural and computational measures can predict human creativity.
View Article and Find Full Text PDFAn important aspect of the perceived quality of vocal music is the degree to which the vocalist sings in tune. Although most listeners seem sensitive to vocal mistuning, little is known about the development of this perceptual ability or how it differs between listeners. Motivated by a lack of suitable preexisting measures, we introduce in this article an adaptive and ecologically valid test of mistuning perception ability.
View Article and Find Full Text PDFBeat perception is increasingly being recognised as a fundamental musical ability. A number of psychometric instruments have been developed to assess this ability, but these tests do not take advantage of modern psychometric techniques, and rarely receive systematic validation. The present research addresses this gap in the literature by developing and validating a new test, the Computerised Adaptive Beat Alignment Test (CA-BAT), a variant of the Beat Alignment Test (BAT) that leverages recent advances in psychometric theory, including item response theory, adaptive testing, and automatic item generation.
View Article and Find Full Text PDFModern psychometric theory provides many useful tools for ability testing, such as item response theory, computerised adaptive testing, and automatic item generation. However, these techniques have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern psychometric techniques can bring many benefits, including sophisticated reliability measures, improved construct validity, avoidance of exposure effects, and improved efficiency.
View Article and Find Full Text PDF