Background: Loss-of-function mutations in the GBA1 gene are one of the most common genetic risk factors for onset of Parkinson's disease and subsequent progression (GBA-PD). GBA1 encodes the lysosomal enzyme glucocerebrosidase (GCase), a promising target for a possible first disease-modifying therapy. LTI-291 is an allosteric activator of GCase, which increases the activity of normal and mutant forms of GCase.
View Article and Find Full Text PDFBackground: Molecules related to glucocerebrosidase (GCase) are potential biomarkers for development of compounds targeting GBA1-associated Parkinson's disease (GBA-PD).
Objectives: Assessing variability of various glycosphingolipids (GSLs) in plasma, peripheral blood mononuclear cells (PBMCs), and cerebrospinal fluid (CSF) across GBA-PD, idiopathic PD (iPD), and healthy volunteers (HVs).
Methods: Data from five studies were combined.
Background: Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aβ disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting β-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aβ42 and significantly contribute to plaque deposition.
View Article and Find Full Text PDFWith the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone.
View Article and Find Full Text PDFAims: A mutation in the GBA1 gene is the most common genetic risk factor for developing Parkinson's disease. GBA1 encodes the lysosomal enzyme glucosylceramidase beta (glucocerebrosidase, GCase) and mutations decrease enzyme activity. LTI-291 is an allosteric modulator of GCase, enhancing its activity.
View Article and Find Full Text PDFA variant in the GBA1 gene is one of the most common genetic risk factors to develop Parkinson's disease (PD). Here the serendipitous finding is reported of a polymerase dependent allelic imbalance when using next generation sequencing, potentially resulting in false-negative results when the allele frequency falls below the variant calling threshold (by default commonly at 30%). The full GBA1 gene was sequenced using next generation sequencing on saliva derived DNA from PD patients.
View Article and Find Full Text PDFAcid ceramidase (AC) is a cysteine hydrolase that plays a crucial role in the metabolism of lysosomal ceramides, important members of the sphingolipid family, a diversified class of bioactive molecules that mediate many biological processes ranging from cell structural integrity, signaling, and cell proliferation to cell death. In the effort to expand the structural diversity of the existing collection of AC inhibitors, a novel class of substituted oxazol-2-one-3-carboxamides were designed and synthesized. Herein, we present the chemical optimization of our initial hits, 2-oxo-4-phenyl--(4-phenylbutyl)oxazole-3-carboxamide and 2-oxo-5-phenyl--(4-phenylbutyl)oxazole-3-carboxamide , which resulted in the identification of 5-[4-fluoro-2-(1-methyl-4-piperidyl)phenyl]-2-oxo--pentyl-oxazole-3-carboxamide as a potent AC inhibitor with optimal physicochemical and metabolic properties, showing target engagement in human neuroblastoma SH-SY5Y cells and a desirable pharmacokinetic profile in mice, following intravenous and oral administration.
View Article and Find Full Text PDFBackground: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population.
View Article and Find Full Text PDFSphingolipids (SphLs) are a diverse class of molecules that are regulated by a complex network of enzymatic pathways. A disturbance in these pathways leads to lipid accumulation and initiation of several SphL-related disorders. Acid ceramidase is one of the key enzymes that regulate the metabolism of ceramides and glycosphingolipids, which are important members of the SphL family.
View Article and Find Full Text PDFAge-related neurodegenerative disorders are characterized by a slow, persistent accumulation of aggregated proteins. Although cells can elicit physiological responses to enhance cellular clearance and counteract accumulation, it is unclear how pathogenic proteins evade this process in disease. We find that Parkinson's disease α-synuclein perturbs the physiological response to lysosomal stress by impeding the SNARE protein ykt6.
View Article and Find Full Text PDFβ-Glucocerebrosidase (GCase) mutations cause Gaucher's disease and are a high risk factor in Parkinson's disease. The implementation of a small molecule modulator is a strategy to restore proper folding and lysosome delivery of degradation-prone mutant GCase. Here, we present a potent quinazoline modulator, JZ-4109, which stabilizes wild-type and N370S mutant GCase and increases GCase abundance in patient-derived fibroblast cells.
View Article and Find Full Text PDFThe pathology of Parkinson's disease and other synucleinopathies is characterized by the formation of intracellular inclusions comprised primarily of misfolded, fibrillar α-synuclein (α-syn). One strategy to slow disease progression is to prevent the misfolding and aggregation of its native monomeric form. Here we present findings that support the contention that the tricyclic antidepressant compound nortriptyline (NOR) has disease-modifying potential for synucleinopathies.
View Article and Find Full Text PDFα-Synuclein causes Parkinson's disease if mutated or aberrantly produced in neurons. α-Synuclein-lipid interactions are important for the normal function of the protein, but can also contribute to pathogenesis. We previously reported that deletion of the first 10 N-terminal amino acids dramatically reduced lipid binding in vitro, as well as membrane binding and toxicity in yeast.
View Article and Find Full Text PDFWe recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface.
View Article and Find Full Text PDFAlpha-synuclein (alpha-syn), a protein implicated in Parkinson's disease, is structurally diverse. In addition to its random-coil state, alpha-syn can adopt an alpha-helical structure upon lipid membrane binding or a beta-sheet structure upon aggregation. We used yeast biology and in vitro biochemistry to detect how sequence changes alter the structural propensity of alpha-syn.
View Article and Find Full Text PDFUbiquitin C-terminal hydrolase-L1 (UCH-L1) is linked to Parkinson's disease (PD) and memory and is selectively expressed in neurons at high levels. Its expression pattern suggests a function distinct from that of its widely expressed homolog UCH-L3. We report here that, in contrast to UCH-L3, UCH-L1 exists in a membrane-associated form (UCH-L1(M)) in addition to the commonly studied soluble form.
View Article and Find Full Text PDFalpha-Synuclein (alpha-syn) phosphorylation at serine 129 is characteristic of Parkinson disease (PD) and related alpha-synulceinopathies. However, whether phosphorylation promotes or inhibits alpha-syn aggregation and neurotoxicity in vivo remains unknown. This understanding is critical for elucidating the role of alpha-syn in the pathogenesis of PD and for development of therapeutic strategies for PD.
View Article and Find Full Text PDFAltered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own degradation along with that of other CMA substrates.
View Article and Find Full Text PDFThe third and most recently identified Parkinson's disease-linked variant of the neuronal protein alpha-synuclein to be identified (E46K) results in widespread brain pathology and early onset Parkinson symptoms (Zarranz et al. (2004) Ann. Neurol.
View Article and Find Full Text PDFDeubiquitinating enzymes (DUBs) are negative regulators of protein ubiquitination and play an important role in ubiquitin-dependent processes. Recent studies have found that diverse cellular mechanisms are employed to control the activity of DUBs. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a highly expressed neuronal DUB linked to Parkinson disease; however, little is known about its specific functions or modes of regulation.
View Article and Find Full Text PDFTo investigate the alpha-synuclein protein and its role in Parkinson's disease, we screened a library of random point mutants both in vitro and in yeast to find variants in an unbiased way that could help us understand the sequence-phenotype relationship. We developed a rapid purification method that allowed us to screen 59 synuclein mutants in vitro and discovered two double-point mutants that fibrillized slowly relative to wild-type, A30P, and A53T alpha-synucleins. The yeast toxicity of all of these proteins was measured, and we found no correlation with fibrillization rate, suggesting that fibrillization is not necessary for synuclein-induced yeast toxicity.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by the presence of cytoplasmic inclusions composed of alpha-synuclein (alpha-syn) in dopaminergic neurons. This suggests a pivotal role of dopamine (DA) on PD development. Here, we show that DA modulates differently the stability of protofibrils (PF) and fibrils (F) composed of wild type or variants of alpha-syn (A30P and A53T) as probed by high hydrostatic pressure (HHP).
View Article and Find Full Text PDFDeubiquitinating enzymes regulate essential cellular processes, and their dysregulation is implicated in multiple disease states. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has garnered attention for its links with Parkinson's disease and cancer; however, the mechanism of action of this enzyme in cells remains poorly understood. In order to advance our understanding of UCH-L1 function, we have been developing small molecule modulators of the enzyme for use as tools to probe its role in cells.
View Article and Find Full Text PDF