Saturn's polar regions (polewards of ∼63° planetocentric latitude) are strongly dynamically active with zonal jets, polar cyclones and the intriguing north polar hexagon (NPH) wave. Here we analyze measurements of horizontal winds, previously obtained from Cassini images by Antuñano et al. (2015), https://doi.
View Article and Find Full Text PDFSaturn's slow seasonal evolution was disrupted in 2010-2011 by the eruption of a bright storm in its northern spring hemisphere. Thermal infrared spectroscopy showed that within a month, the resulting planetary-scale disturbance had generated intense perturbations of atmospheric temperatures, winds, and composition between 20° and 50°N over an entire hemisphere (140,000 kilometers). The tropospheric storm cell produced effects that penetrated hundreds of kilometers into Saturn's stratosphere (to the 1-millibar region).
View Article and Find Full Text PDFIn laboratory studies and associated theoretical and numerical work covering a very wide range of conditions (as specified by the key dimensionless parameters of the systems used) the phenomenon of sloping convection in rotating fluids can manifest itself in one of several spatial forms (waves, closed eddies, and combinations thereof), but all with strong local gradients (fronts, jet streams) and exhibiting various types of temporal behavior [steady, periodic vacillation, aperiodic (geostrophic) turbulence]. These general properties were first discovered in cylindrical (annular) systems, but they do not depend critically on geometry; differences between spherical and cylindrical systems are largely to be found in quantitative details. In all cases, the raison d'e tre of sloping convection is horizontal advective transfer, a process accompanied by upward advective heat transfer, which affects and may control vertical potential density gradients.
View Article and Find Full Text PDF