Publications by authors named "Peter L Lenaker"

Article Synopsis
  • Current methods estimating PAH effects in benthic organisms often rely on organic carbon-normalized sediment concentrations, which may inaccurately overestimate bioavailability and lead to excessive remediation costs.
  • Recent studies using polyethylene passive sampling devices (PEDs) provide a more accurate measure of freely dissolved PAH concentrations in sediment porewater and surface water.
  • Findings from this research show that the EqP method can overestimate bioavailable PAH concentrations by up to 960 times compared to PED measurements, highlighting the need for revised monitoring and remediation strategies at affected locations.
View Article and Find Full Text PDF

Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years.

View Article and Find Full Text PDF

Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location.

View Article and Find Full Text PDF

In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database.

View Article and Find Full Text PDF

With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals.

View Article and Find Full Text PDF

Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific.

View Article and Find Full Text PDF

The spatial distribution, concentration, particle size, and polymer compositions of microplastics in Lake Michigan and Lake Erie sediment were investigated. Fibers/lines were the most abundant of the five particle types characterized. Microplastic particles were observed in all samples with mean concentrations for particles greater than 0.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are among the most widespread and potentially toxic contaminants in Great Lakes (USA/Canada) tributaries. The sources of PAHs are numerous and diverse, and identifying the primary source(s) can be difficult. The present study used multiple lines of evidence to determine the likely sources of PAHs to surficial streambed sediments at 71 locations across 26 Great Lakes Basin watersheds.

View Article and Find Full Text PDF

Microplastic contamination was studied along a freshwater continuum from inland streams to the Milwaukee River estuary to Lake Michigan and vertically from the water surface, water subsurface, and sediment. Microplastics were detected in all 96 water samples and 9 sediment samples collected. Results indicated a gradient of polymer presence with depth: low-density particles decreased from the water surface to the subsurface to sediment, and high-density particles had the opposite result.

View Article and Find Full Text PDF

Hydrologic, seasonal, and spatial variability of sewage contamination was studied at six locations within a watershed upstream from water reclamation facility (WRF) effluent to define relative loadings of sewage from different portions of the watershed. Fecal pollution from human sources was spatially quantified by measuring two human-associated indicator bacteria (HIB) and eight human-specific viruses (HSV) at six stream locations in the Menomonee River watershed in Milwaukee, Wisconsin from April 2009 to March 2011. A custom, automated water sampler, which included HSV filtration, was deployed at each location and provided unattended, flow-weighted, large-volume (30-913 L) sampling.

View Article and Find Full Text PDF

Fecal contamination from sewage and agricultural runoff is a pervasive problem in Great Lakes watersheds. Most work examining fecal pollution loads relies on discrete samples of fecal indicators and modeling land use. In this study, we made empirical measurements of human and ruminant-associated fecal indicator bacteria and combined these with hydrological measurements in eight watersheds ranging from predominantly forested to highly urbanized.

View Article and Find Full Text PDF

Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010-13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: