Publications by authors named "Peter L Lantos"

Multiple systemic atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder of undetermined aetiology characterized by a distinctive oligodendrogliopathy with argyrophilic glial cytoplasmic inclusions (GCIs) and selective neurodegeneration. GCIs or Papp-Lantos inclusions, described more than 20 years ago, are now accepted as the hallmarks for the definite neuropathological diagnosis of MSA and suggested to play a central role in the pathogenesis of this disorder. GCIs are composed of hyperphosphorylated alpha-synuclein (alphaSyn), ubiquitin, LRRK2 (leucin-rich repeat serine/threonine-protein) and many other proteins, suggesting that MSA represents an invariable synucleinopathy of non-neuronal type, a specific form of proteinopathies.

View Article and Find Full Text PDF

Abnormal protein aggregates, in the form of either extracellular plaques or intracellular inclusions, are an important pathological feature of the majority of neurodegenerative disorders. The major molecular constituents of these lesions, viz., beta-amyloid (Abeta), tau, and alpha-synuclein, have played a defining role in the diagnosis and classification of disease and in studies of pathogenesis.

View Article and Find Full Text PDF

The density and spatial distribution of the vacuoles, glial cell nuclei and glial cytoplasmic inclusions (GCI) were studied in the white matter of various cortical and subcortical areas in 10 cases of multiple system atrophy (MSA). Vacuolation was more prevalent in subcortical than cortical areas and especially in the central tegmental tract. Glial cell nuclei widespread in all areas of the white matter studied; overall densities of glial cell nuclei being significantly greater in the central tegmental tract and frontal cortex compared with areas of the pons.

View Article and Find Full Text PDF

Objective: To study the topography of neurofibrillary tangles (NFT) in cortical and subcortical areas in progressive supranuclear palsy (PSP).

Methods: Pattern analysis was carried out on tau-positive NFT in eight PSP cases.

Results: Of the areas studied, NFT were randomly distributed in 68%, regularly distributed in 3%, and clustered in 29%.

View Article and Find Full Text PDF

Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis.

View Article and Find Full Text PDF

Neurodegenerative disorders are characterized by the formation of distinct pathological changes in the brain, including extracellular protein deposits, cellular inclusions, and changes in cell morphology. Since the earliest published descriptions of these disorders, diagnosis has been based on clinicopathological features, namely, the coexistence of a specific clinical profile together with the presence or absence of particular types of lesion. In addition, the molecular profile of lesions has become an increasingly important feature both in the diagnosis of existing disorders and in the description of new disease entities.

View Article and Find Full Text PDF

In cases of multiple system atrophy (MSA), glial cytoplasmic inclusions (GCI) were distributed randomly or present in large diffuse clusters (>1,600 microm in diameter) in most areas studied. These spatial patterns contrast with those reported for filamentous neuronal inclusions in the tauopathies and alpha-synucleinopathies.

View Article and Find Full Text PDF

The frequency of morphological abnormalities in neuronal perikarya was studied in the cerebral cortex in cases of sporadic CJD (sCJD) and in elderly control patients. Three hypotheses were tested, namely that the proportion of neurons exhibiting abnormal morphology was increased: (i) in sCJD compared with control patients; (ii) in sCJD, in areas with significant prion protein (PrP) deposition compared with regions with little or no PrP deposition; and (iii) when neurons were spatially associated with a PrP deposit compared with neurons between PrP deposits. Changes in cell shape (swollen or atrophic cell bodies), nuclei (displaced, indistinct, shrunken or absent nuclei; absence of nucleolus), and cytoplasm (dense or pale cytoplasm, PrP positive cytoplasm, vacuolation) were commonly observed in all of the cortical areas studied in the sCJD cases.

View Article and Find Full Text PDF

Olfactory dysfunction is a characteristic clinical sign in Parkinson's disease (PD); it is also present in multiple system atrophy (MSA). The pathological basis of hyposmia or anosmia in PD is well known: the olfactory bulb (OB) contains numerous Lewy bodies and severe neuronal loss is present in the anterior olfactory nucleus (AON). We established that glial cytoplasmic inclusions (GCIs) are present in all the OBs from MSA cases.

View Article and Find Full Text PDF

DRPLA is a rare neurodegenerative disorder caused by CAG triplet elongation on chromosome 12p. In addition to neurodegeneration of both the dentatorubral and pallidoluysian systems, there is cerebral white matter damage, especially in older cases. Intracellular accumulation of DRPLA protein is widespread in the central nervous system, and DRPLA protein has been shown to immobilize glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which regulates glycolysis and controls mRNA of tissue-type plasminogen activator (tPA) in tissue restoration.

View Article and Find Full Text PDF

We report a new disease, dementia with neurofilament inclusions, characterized clinically by early-onset dementia with frontal lobe signs, focal atrophy of the frontal and temporal lobes, and microscopically by the presence in many brain regions of intraneuronal, cytoplasmic, neurofilament inclusions. The neuronal inclusions are immunoreactive to all three molecular weight neurofilament subunits: heavy (NF-H), light, and medium subunits, including the phosphorylated and non-phosphorylated forms of NF-H. Prion protein and beta-amyloid deposits were absent.

View Article and Find Full Text PDF

To determine the pattern of cortical degeneration in cases of variant Creutzfeldt-Jakob disease (vCJD), the laminar distribution of the vacuolation ("spongiform change"), surviving neurones, glial cell nuclei, and prion protein (PrP) deposits was studied in the frontal, parietal and temporal lobes. The vacuolation exhibited two common patterns of distribution: either the vacuoles were present throughout the cortex or a bimodal distribution was present with peaks of density in the upper and lower cortical laminae. The distribution of the surviving neurones was highly variable in different regions; the commonest pattern being a uniform distribution with cortical depth.

View Article and Find Full Text PDF

Objective: To report the clinical and neuropathological features in a patient with Creutzfeldt-Jakob disease with amyotrophy and demyelinating polyneuropathy.

Design: Case report.

Patient And Results: A 62-year-old man had progressive numbness of the left foot, unsteady gait, diminished deep reflexes, fasciculations, and tactile hypesthesia on the feet.

View Article and Find Full Text PDF

Pathological lesions in the form of extracellular protein deposits, intracellular inclusions and changes in cell morphology occur in the brain in the majority of neurodegenerative disorders. Studies of the presence, distribution, and molecular determinants of these lesions are often used to define individual disorders and to establish the mechanisms of lesion pathogenesis. In most disorders, however, the relationship between the appearance of a lesion and the underlying disease process is unclear.

View Article and Find Full Text PDF