Publications by authors named "Peter L Hagedoorn"

Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis.

View Article and Find Full Text PDF

Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position.

View Article and Find Full Text PDF

A tungsten-containing aldehyde:ferredoxin oxidoreductase (AOR) has been purified to homogeneity from Pyrobaculum aerophilum. The N-terminal sequence of the isolated enzyme matches a single open reading frame in the genome. Metal analysis and electron paramagnetic resonance (EPR) spectroscopy indicate that the P.

View Article and Find Full Text PDF

The dimethylsulfoxide reductase (DMSOR) from Rhodobacter capsulatus is known to retain its three-dimensional structure and enzymatic activity upon substitution of molybdenum, the metal that occurs naturally at the active site, by tungsten. The redox properties of tungsten-substituted DMSOR (W-DMSOR) have been investigated by a dye-mediated reductive titration with the concentration of the W(V) state monitored by EPR spectroscopy. At pH 7.

View Article and Find Full Text PDF

The combination of UV/visible/NIR absorption, CD and variable-temperature magnetic circular dichroism (VTMCD), EPR, and X-ray absorption (XAS) spectroscopies has been used to investigate the electronic and structural properties of the oxidized and reduced forms of Pyrococcus furiosus superoxide reductase (SOR) as a function of pH and exogenous ligand binding. XAS shows that the mononuclear ferric center in the oxidized enzyme is very susceptible to photoreduction in the X-ray beam. This observation facilitates interpretation of ground- and excited-state electronic properties and the EXAFS results for the oxidized enzyme in terms of the published X-ray crystallographic data (Yeh, A.

View Article and Find Full Text PDF