Publications by authors named "Peter L Christiansen"

This paper applies geometric methods developed to understand chaos and transport in Hamiltonian systems to the study of power distribution in nonlinear waveguide arrays. The specific case of two linearly coupled chi((2)) waveguides is modeled and analyzed in terms of transport and geometry in the phase space. This gives us a transport problem in the phase space resulting from the coupling of the two Hamiltonian systems for each waveguide.

View Article and Find Full Text PDF

The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrödinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrödinger equation in the critical dimension 2 and can lead to a stable oscillating beam. This is observed to involve a splitting of the beam into an inner part that is oscillatory and of subcritical power and an outer dispersing part.

View Article and Find Full Text PDF

We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states of dark solitons.

View Article and Find Full Text PDF