Tissue factor (TF) is a cell surface protein that plays a role in blood clotting but is also commonly expressed in many cancers. Recent research implicated TF in cancer proliferation, metastasis, angiogenesis, and immune escape. Therefore, TF can be considered a viable therapeutic target against cancer.
View Article and Find Full Text PDFDetailed evaluation of prostate cancer glands is an essential yet labor-intensive step in grading prostate cancer. Gland segmentation can serve as a valuable preliminary step for machine-learning-based downstream tasks, such as Gleason grading, patient classification, cancer biomarker building, and survival analysis. Despite its importance, there is currently a lack of a reliable gland segmentation model for prostate cancer.
View Article and Find Full Text PDFNanobodies, or single-domain antibody fragments, are promising candidates for molecular imaging due to their small size, rapid tissue penetration, and high target specificity. However, a significant challenge in their use is high renal uptake and retention, which can limit the therapeutic efficacy and complicate image interpretation. This study compares five different fluorine-18-labeled prosthetic groups for nanobodies, aiming to optimize pharmacokinetics and minimize kidney retention while maintaining tumor targeting.
View Article and Find Full Text PDFNear-infrared photoimmunotherapy (NIR-PIT) is a novel antitumor therapy that selectively kills cancer cells by NIR light-triggered photochemical reaction of IRDye700DX within Ab-photoabsorber conjugates (APCs). NIR-PIT induces immunogenic cell death, causing immune cell migration between the tumor and tumor-draining lymph nodes, and expanding multiclonal tumor-infiltrating CD8 T cells. Crucially, the cytotoxic effects of NIR-PIT are limited to cancer cells, sparing immune cells such as antigen-presenting cells and T cells, which are key players in boosting antitumor host immunity.
View Article and Find Full Text PDFObjectives: To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.
View Article and Find Full Text PDFIn adoptive T cell therapy (ACT), the direct cytotoxic effects of CD8 T cells on tumor cells, including the release of interferon-gamma (IFN-γ), are considered the primary mechanism for tumor eradication. Cancer antigen escape diminishes the T cell responses, thereby limiting the therapeutic success. The impacts of IFN-γ targeting non-tumor cells in ACT, on the other hand, remains under-investigated.
View Article and Find Full Text PDFPurpose: To develop and evaluate a multimodal approach including clinical parameters and biparametric MRI-based artificial intelligence (AI) model for determining the necessity of prostate biopsy in patients with PI-RADS 3 lesions.
Methods: This retrospective study included a prospectively recruited patient cohort with PI-RADS 3 lesions who underwent prostate MRI and MRI/US fusion-guided biopsy between April 2019 and February 2024 in a single institution. The study examined demographic data, PSA and PSA density (PSAD) levels, prostate volumes, prospective PI-RADS v2.
Background: Somatostatin receptor (SSR) targeting radiotracer Ga-DOTATATE is used for Positron Emission Tomography (PET)/Computed Tomography (CT) imaging to assess patients with Pheochromocytoma and paraganglioma (PPGL), rare types of Neuroendocrine tumor (NET) which can metastasize thereby becoming difficult to quantify. The goal of this study is to develop an artificial intelligence (AI) model for automated lesion segmentation on whole-body 3D DOTATATE-PET/CT and to automate the tumor burden calculation. 132 Ga-DOTATATE PET/CT scans from 38 patients with metastatic and inoperable PPGL, were split into 70, and 62 scans, from 20, and 18 patients for training, and test sets, respectively.
View Article and Find Full Text PDFThe increased use of prostate-specific membrane antigen (PSMA) based PET imaging for prostate cancer (Pca) detection has revolutionized the clinical management of Pca, with higher diagnostic sensitivity for extraprostatic disease and increasing clinical utility across different stages of the disease. The integration of PSMA PET imaging into clinical guidelines and consensus documents reflects its growing importance in the personalized management of Pca. This review of recent literature highlights the rapid evolution of PSMA PET into the mainstream of staging and restaging and the decreasing reliance on conventional imaging modalities.
View Article and Find Full Text PDFBackground/objectives: Apparent Diffusion Coefficient (ADC) maps in prostate MRI can reveal tumor characteristics, but their accuracy can be compromised by artifacts related with patient motion or rectal gas associated distortions. To address these challenges, we propose a novel approach that utilizes a Generative Adversarial Network to synthesize ADC maps from T2-weighted magnetic resonance images (T2W MRI).
Methods: By leveraging contrastive learning, our model accurately maps axial T2W MRI to ADC maps within the cropped region of the prostate organ boundary, capturing subtle variations and intricate structural details by learning similar and dissimilar pairs from two imaging modalities.
Rationale And Objectives: The increasing use of focal therapy (FT) in localized prostate cancer (PCa) management requires a standardized MRI interpretation system to detect recurrent clinically significant PCa (csPCa). This pilot study evaluates the novel Transatlantic Recommendations for Prostate Gland Evaluation with MRI after Focal Therapy (TARGET) and compares its performance to that of the Prostate Imaging after Focal Ablation (PI-FAB) system.
Materials And Methods: This retrospective study included 38 patients who underwent primary FT for localized PCa, with follow-up multiparametric MRI (mpMRI) and biopsy.
Prostate cancer is one of the most prevalent malignancies in the world. While deep learning has potential to further improve computer-aided prostate cancer detection on MRI, its efficacy hinges on the exhaustive curation of manually annotated images. We propose a novel methodology of semisupervised learning (SSL) guided by automatically extracted clinical information, specifically the lesion locations in radiology reports, allowing for use of unannotated images to reduce the annotation burden.
View Article and Find Full Text PDFDiagnostics (Basel)
September 2024
This Special Topics Issue, "Imaging-based Diagnosis of Prostate Cancer-State of the Art", of compiles 10 select articles [...
View Article and Find Full Text PDFGlypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines.
View Article and Find Full Text PDFObjective: To assess impact of image quality on prostate cancer extraprostatic extension (EPE) detection on MRI using a deep learning-based AI algorithm.
Materials And Methods: This retrospective, single institution study included patients who were imaged with mpMRI and subsequently underwent radical prostatectomy from June 2007 to August 2022. One genitourinary radiologist prospectively evaluated each patient using the NCI EPE grading system.
Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade.
View Article and Find Full Text PDFB cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells.
View Article and Find Full Text PDFCellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation.
View Article and Find Full Text PDF