The application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages).
View Article and Find Full Text PDFMicrobiol Resour Announc
February 2020
We report the draft genome sequence of sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.
View Article and Find Full Text PDFWe report here the complete annotated genome sequence of ΦGP100, a lytic bacteriophage of the family. ΦGP100 was isolated from rhizosphere soil in Switzerland and infects specifically strains of that are known for their plant-beneficial activities. Phage ΦGP100 has a 50,547-bp genome with 76 predicted open reading frames.
View Article and Find Full Text PDFFront Microbiol
February 2017
Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity.
View Article and Find Full Text PDFSome plant-beneficial pseudomonads can invade and kill pest insects in addition to their ability to protect plants from phytopathogens. We explored the genetic basis of O-polysaccharide (O-PS, O-antigen) biosynthesis in the representative insecticidal strains Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 and investigated its role in insect pathogenicity. Both strains produce two distinct forms of O-PS, but differ in the organization of their O-PS biosynthesis clusters.
View Article and Find Full Text PDFPseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots.
View Article and Find Full Text PDFInsects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals.
View Article and Find Full Text PDFPseudomonas fluorescens CHA0 is a root-associated biocontrol agent that suppresses soil-borne fungal diseases of crops. Remarkably, the pseudomonad is also endowed with systemic and oral activity against pest insects which depends on the production of the insecticidal Fit toxin. The toxin gene (fitD) is part of a virulence cassette encoding three regulators (FitF, FitG, FitH) and a type I secretion system (FitABC-E).
View Article and Find Full Text PDFThe Staphylococcus aureus cell wall stress stimulon (CWSS) is activated by cell envelope-targeting antibiotics or depletion of essential cell wall biosynthesis enzymes. The functionally uncharacterized S. aureus LytR-CpsA-Psr (LCP) proteins, MsrR, SA0908 and SA2103, all belong to the CWSS.
View Article and Find Full Text PDFStaphylococcus aureus contains three members of the LytR-CpsA-Psr (LCP) family of membrane proteins: MsrR, SA0908 and SA2103. The characterization of single-, double- and triple-deletion mutants revealed distinct phenotypes for each of the three proteins. MsrR was involved in cell separation and septum formation and influenced β-lactam resistance; SA0908 protected cells from autolysis; and SA2103, although displaying no apparent phenotype by itself, enhanced the properties of msrR and sa0908 mutants when deleted.
View Article and Find Full Text PDF