Publications by authors named "Peter Kraal"

Sorption of nutrients such as phosphate (P) and silicate (Si) by ferric iron (oxyhydr)oxides (FeOx) modulates nutrient mobility and alters the structure and reactivity of the FeOx. We investigated the impact of these interactions on FeOx transformations using a novel approach with samplers containing synthetic FeOx embedded in diffusive hydrogels. The FeOx were prepared by Fe(III) hydrolysis and Fe(II) oxidation, in the absence and presence of P or Si.

View Article and Find Full Text PDF

Iron (oxyhydr)oxides (FeOx) control retention of dissolved nutrients and contaminants in aquatic systems. However, FeOx structure and reactivity is dependent on adsorption and incorporation of such dissolved species, particularly oxyanions such as phosphate and silicate. These interactions affect the fate of nutrients and metal(loids), especially in perturbed aquatic environments such as eutrophic coastal systems and environments impacted by acid mine drainage.

View Article and Find Full Text PDF

Acid sulfate systems commonly contain the metastable ferric oxyhydroxysulfate mineral schwertmannite, as well as phosphate (PO) - a nutrient that causes eutrophication when present in excess. However, acid sulfate systems often experience reducing conditions that destabilize schwertmannite. Under such conditions, the long-term fate of both schwertmannite and PO may be influenced by interactions during microbially-mediated Fe(III) and SO reduction.

View Article and Find Full Text PDF

Schwertmannite is a ferric oxyhydroxysulfate mineral, which is common in acid sulfate systems. Such systems contain varying concentrations of phosphate (PO)-an essential nutrient whose availability may be coupled to schwertmannite formation and fate. This study examines the effect of phosphate on schwertmannite stability under reducing conditions.

View Article and Find Full Text PDF

Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale.

View Article and Find Full Text PDF

The chemical forms of phosphorus (P) in sediments are routinely measured in studies of P in modern and ancient marine environments. However, samples for such analyses are often exposed to atmospheric oxygen during storage and handling. Recent work suggests that long-term exposure of pyrite-bearing sediments can lead to a decline in apatite P and an increase in ferric Fe-bound P.

View Article and Find Full Text PDF

Estuaries are crucial biogeochemical filters at the land-ocean interface that are strongly impacted by anthropogenic nutrient inputs. Here, we investigate benthic nitrogen (N) and phosphorus (P) dynamics in relation to physicochemical surface sediment properties and bottom water mixing in the shallow, eutrophic Peel-Harvey Estuary. Our results show the strong dependence of sedimentary P release on Fe and S redox cycling.

View Article and Find Full Text PDF

The effect of SO4(2-) availability on the microbially mediated reductive transformation of As(V)-coprecipitated schwertmannite (Fe8O8(OH)3.2(SO4)2.4(AsO4)0.

View Article and Find Full Text PDF

The speciation of titrated copper in a dissolved tannic acid (TA) solution with an initial concentration of 4 mmol organic carbon (OC)/l was investigated in a nine-step titration experiment (Cu/OC molar ratio=0.0030-0.0567).

View Article and Find Full Text PDF