Publications by authors named "Peter Kos"

Article Synopsis
  • Freshwater ecosystems are vital for global services, but human activities like urbanization, industry, and agriculture can negatively affect water quality.
  • This study analyzed water and biofilm samples from different sections of the Danube River to observe bacterial community diversity using advanced sequencing techniques.
  • Results indicated that biofilm communities had greater taxonomic diversity than planktonic communities and showed distinct variations based on habitat and river type, with urbanized areas hosting pollution-tolerant bacteria like Acinetobacter and Pseudomonas.
View Article and Find Full Text PDF

Singlet oxygen (O) is an important reactive oxygen species whose formation by the type-II, light-dependent, photodynamic reaction is inevitable during photosynthetic processes. In the last decades, the recognition that O is not only a damaging agent, but can also affect gene expression and participates in signal transduction pathways has received increasing attention. However, contrary to several other taxa, O-responsive genes have not been identified in the important cyanobacterial model organism Synechocystis PCC 6803.

View Article and Find Full Text PDF

The adaptability of plant populations to a changing environment depends on their genetic diversity, which in turn is influenced by the degree of sexual reproduction and gene flow from distant areas. Aquatic macrophytes can reproduce both sexually and asexually, and their reproductive fragments are spread in various ways (e.g.

View Article and Find Full Text PDF

In freshwaters, microbial communities are of outstanding importance both from ecological and public health perspectives, however, they are threatened by the impact of global warming. To reveal how different prokaryotic communities in a large temperate river respond to environment conditions related to climate change, the present study provides the first detailed insight into the composition and spatial and year-round temporal variations of planktonic and epilithic prokaryotic community. Microbial diversity was studied using high-throughput next generation amplicon sequencing.

View Article and Find Full Text PDF

Symbiodiniaceae is an important dinoflagellate family which lives in endosymbiosis with reef invertebrates, including coral polyps, making them central to the holobiont. With coral reefs currently under extreme threat from climate change, there is a pressing need to improve our understanding on the stress tolerance and stress avoidance mechanisms of spp. Reactive oxygen species (ROS) such as singlet oxygen are central players in mediating various stress responses; however, the detection of ROS using specific dyes is still far from definitive in intact cells due to the hindrance of uptake of certain fluorescent dyes because of the presence of the cell wall.

View Article and Find Full Text PDF

The detection and identification of heavy metal contaminants are becoming increasingly important as environmental pollution causes an ever-increasing health hazard in the last decades. Bacterial heavy metal reporters, which constitute an environmentally friendly and cheap approach, offer great help in this process. Although their application has great potential in the detection of heavy metal contamination, their sensitivity still needs to be improved.

View Article and Find Full Text PDF

Cyanobacteria can form biofilms in nature, which have ecological roles and high potential for practical applications. In order to study them we need biofilm models that contain healthy cells and can withstand physical manipulations needed for structural studies. At present, combined studies on the structural and physiological features of axenic cyanobacterial biofilms are limited, mostly due to the shortage of suitable model systems.

View Article and Find Full Text PDF

We developed a simple method to apply CRISPR interference by modifying an existing plasmid pCRISPathBrick containing the native S. pyogenes CRISPR assembly for Synechocystis PCC6803 and named it pCRPB1010. The technique presented here using deadCas9 is easier to implement for gene silencing in Synechocystis PCC6803 than other existing techniques as it circumvents the genome integration and segregation steps thereby significantly shortens the construction of the mutant strains.

View Article and Find Full Text PDF

Sulfide detoxification can be catalyzed by ancient membrane-bound flavoproteins, sulfide:quinone oxidoreductases (Sqr), which have important roles in sulfide homeostasis and sulfide-dependent energy conservation processes by transferring electrons from sulfide to respiratory or photosynthetic membrane electron flow. Sqr enzymes have been categorized into six groups. Several members of the groups I, II, III, and V are well-known, but type IV and VI Sqrs are, as yet, uncharacterized or hardly characterized at all.

View Article and Find Full Text PDF
Article Synopsis
  • Petroleum hydrocarbons are common pollutants in soil and aquifers, making their removal a key focus for environmental research.
  • A new strain of Rhodococcus sp. MK1 was isolated, which can simultaneously break down various components of diesel oil, and its genome was sequenced revealing a chromosome and a plasmid.
  • Experiments showed that biostimulation can enhance the natural microbial community for cleaning up aged oil contamination, while bioaugmentation is crucial for addressing newly contaminated and heavily polluted areas.
View Article and Find Full Text PDF

Novosphingobium resinovorum SA1 was the first single isolate capable of degrading sulfanilic acid, a widely used representative of sulfonated aromatic compounds. The genome of the strain was recently sequenced, and here, we present whole-cell transcriptome analyses of cells exposed to sulfanilic acid as compared to cells grown on glucose. The comparison of the transcript profiles suggested that the primary impact of sulfanilic acid on the cell transcriptome was a starvation-like effect.

View Article and Find Full Text PDF

Sulfanilic acid (4-aminobenzenesulfonic acid) is a sulfonated aromatic amine widely used in chemical industries for synthesis of various organic dyes and sulfa drugs. There are quite a few microbial co-cultures or single isolates capable of completely degrading this compound. Novosphingobium resinovorum SA1 was the first single bacterium which could utilize sulfanilic acid as its sole carbon, nitrogen and sulfur source.

View Article and Find Full Text PDF

In the present studies, we focused on substrate specificity of tocopherol cyclase, the key enzyme in the biosynthesis of the tocopherols and plastochromanol-8, the main plant lipid antioxidants, with special emphasis on the preference for tocopherols and plastochromanol-8 precursors, taking advantage of the recombinant enzyme originating from Arabidopsis thaliana and isolated plastoglobules, thylakoids and various model systems like micelles and thylakoids. Plastoglobules and triacylglycerol micelles were the most efficient reaction environment for the cyclase. In various investigated systems, synthesis of γ-tocopherol proceeded considerably faster than that of plastochromanol-8, probably mainly due to different localization of the corresponding substrates in the analyzed lipid structures.

View Article and Find Full Text PDF

Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis.

View Article and Find Full Text PDF

The role of the Syn-CRY cryptochrome from the cyanobacterium Synechocystis sp. PCC 6803 has been a subject of research for more than a decade. Recently we have shown that photolyase, showing strong homology with Syn-CRY is required for Photosystem II repair by preventing accumulation of DNA lesions under UV-B (Vass et al.

View Article and Find Full Text PDF

Singlet oxygen ((1) O2 ) is of special interest in plant stress physiology. Studies focused on internal, chlorophyll-mediated production are often complemented with the use of artificial (1) O2 photosensitizers. Here, we report a comparative study on the effects of Rose Bengal (RB), Methylene Violet (MVI), Neutral Red (NR) and Indigo Carmine (IC).

View Article and Find Full Text PDF

Photosynthetic electron transport, chromatic photoacclirnation and expression of the genes encoding the 01, 02, and cytochrome b559 subunits of the Photosystem II complex were studied in the chlorophyll d containing cyanobacterium Acaryochloris marina MBIC11017 under various environmental conditions. During oxygen deprivation and inhibition of photosynthetic electron transport by dibromothymoquinone the psbA1 gene encoding a 01' isoform was induced. All of the three psbA and one of the three psbD (psbD2) genes, encoding two different isoforms of the 01 and the abundant isoform of the 02 proteins, respectively were induced under exposure to UV-B radiation and high intensity visible light.

View Article and Find Full Text PDF

Damage of DNA and Photosystem-II are among the most significant effects of UV-B irradiation in photosynthetic organisms. Both damaged DNA and Photosystem-II can be repaired, which represent important defense mechanisms against detrimental UV-B effects. Correlation of Photosystem-II damage and repair with the concurrent DNA damage and repair was investigated in the cyanobacterium Synechocystis PCC6803 using its wild type and a photolyase deficient mutant, which is unable to repair UV-B induced DNA damages.

View Article and Find Full Text PDF

In several biotechnological applications of living bacterial cells with inducible gene expression systems, the extent of overexpression and the specificity to the inducer are key elements. In the present study, we established the concentration ranges of Zn(2+), Ni(2+), Co(2+), AsO(2)(-), and Cd(2+) ions that caused significant activation of the respective promoters of Synechocystis sp. without concomitant unspecific stress responses.

View Article and Find Full Text PDF

Background: Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery.

Results: We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records.

View Article and Find Full Text PDF

The effect of superoxide anion radicals on the photosynthetic electron transport chain was studied in leaves and isolated thylakoids from tobacco. Superoxide was generated by methylviologen (MV) in the light at the acceptor side of photosystem I (PSI). In isolated thylakoids, the largest damage was observed at the level of the water-splitting activity in photosystem II (PSII), whereas PSI was hardly affected at the light intensities used.

View Article and Find Full Text PDF

To identify optimal conditions for renewable hydrogen production from sunlight and water we have studied transcriptional changes of the hoxEFUYH genes encoding the bidirectional hydrogenase in the cyanobacterium Synechocystis PCC 6803. Transcript abundance detection by real time polymerase chain reaction was supplemented with variable chlorophyll fluorescence measurements to monitor redox changes of the photosynthetic electron transport chain. Our main observations are: (i) abundance of hox transcripts decreases in the dark and recovers in the light.

View Article and Find Full Text PDF

Two whole-cell bioluminescent reporters were constructed by fusing the reporter genes luxAB with the Co(2+) and Zn(2+) inducible coaT promoter or the Ni(2+)-inducible nrsBACD promoter, respectively, in the genome of Synechocystis sp. PCC 6803. The obtained reporters, designated coaLux and nrsLux, respectively, responded quantitatively to metal ions.

View Article and Find Full Text PDF

Non-photochemical chlorophyll fluorescence quenching (NPQ) plays a major role in the protection of the photosynthetic apparatus against damage by excess light, which is closely linked to the production of reactive oxygen species (ROS). The effect of a short heat treatment on NPQ and ROS production was studied with detached tobacco leaves by fluorescence imaging of chlorophyll and of the ROS sensor dye HO-1889NH. NPQ was stimulated >3-fold by 3 min pre-treatment at 44 degrees C, in parallel with suppression of CO(2) uptake, while no ROS formation could be detected.

View Article and Find Full Text PDF

In the cyanobacterium Thermosynechococcus elongatus BP-1, living in hot springs, the light environment directly regulates expression of genes that encode key components of the photosynthetic multi-subunit protein-pigment complex photosystem II (PSII). Light is not only essential as an energy source to power photosynthesis, but leads to formation of aggressive radicals which induce severe damage of protein subunits and organic cofactors. Photosynthetic organisms develop several protection mechanisms against this photo-damage, such as the differential expression of genes coding for the reaction center subunit D1 in PSlI.

View Article and Find Full Text PDF