DNA-encoded libraries (DELs) are large, pooled collections of compounds in which every library member is attached to a stretch of DNA encoding its complete synthetic history. DEL-based hit discovery involves affinity selection of the library against a protein of interest, whereby compounds retained by the target are subsequently identified by next-generation sequencing of the corresponding DNA tags. When analyzing the resulting data, one typically assumes that sequencing output (i.
View Article and Find Full Text PDFThe human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.
View Article and Find Full Text PDFMotivation: Several tools exist to count Mendelian violations in family trios by comparing variants at the same genomic positions. This naive variant comparison, however, fails to assess regions where multiple variants need to be examined together, resulting in reduced accuracy of existing Mendelian violation checking tools.
Results: We introduce VBT, a trio concordance analysis tool, which identifies Mendelian violations by approximately solving the 3-way variant matching problem to resolve variant representation differences in family trios.
Motivation: Classical methods of comparing the accuracies of variant calling pipelines are based on truth sets of variants whose genotypes are previously determined with high confidence. An alternative way of performing benchmarking is based on Mendelian constraints between related individuals. Statistical analysis of Mendelian violations can provide truth set-independent benchmarking information, and enable benchmarking less-studied variants and diverse populations.
View Article and Find Full Text PDF