Oral dosage forms are by far the most common prescription and over-the-counter pharmaceutical dosage forms used worldwide. However, many patients suffer from adverse effects caused by their use of "one-size fits all" mass produced commercially available solid dosage forms, whereby they do not receive dedicated medication or dosage adjusted to their specific needs. The development of 3D printing paves the way for personalised medicine.
View Article and Find Full Text PDFAlthough not readily accessible yet to many community and hospital pharmacists, fuse deposition modelling (FDM) is a 3D printing technique that can be used to create a 3D pharmaceutical dosage form by employing drug loaded filaments extruded via a nozzle, melted and deposited layer by layer. FDM requires printable filaments, which are commonly manufactured by hot melt extrusion, and identifying a suitable extrudable drug-excipient mixture can sometimes be challenging. We propose here the use of passive diffusion as an accessible loading method for filaments that can be printed using FDM technology to allow for the fabrication of oral personalised medicines in clinical settings.
View Article and Find Full Text PDFVibrational spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data.
View Article and Find Full Text PDFFibrinogen assays are commonly used as part of clinical screening tests to investigate haemorrhagic states, for detection of disseminated intravascular coagulation and as a predictor of a variety of cardiovascular events. The Clauss assay, which measures thrombin clotting time, is the most commonly used method for measuring fibrinogen levels. Nevertheless, inconsistencies are present in inter-manufacturer reagent sources, calibration standards and methodologies.
View Article and Find Full Text PDFThe study of the interaction of anticancer drugs with mammalian cells in vitro is important to elucidate the mechanisms of action of the drug on its biological targets. In this context, Raman spectroscopy is a potential candidate for high throughput, non-invasive analysis. To explore this potential, the interaction of cis-diamminedichloroplatinum(II) (cisplatin) with a human lung adenocarcinoma cell line (A549) was investigated using Raman microspectroscopy.
View Article and Find Full Text PDFIn this study the suitability of Raman spectroscopy for the determination of carbon nanotube mediated toxicity on human alveolar carcinoma epithelial cells (A549) is explored. The exposure of this cell line represents the primary pathway of exposure in humans, that of inhalation. Peak ratio analysis demonstrates a dose-dependent response which correlates to previous toxicological studies.
View Article and Find Full Text PDFNon-invasive measurements of cellular function in in vitro cultured cell lines using vibrational spectroscopy require the use of spectroscopic substrates such as quartz, ZnSe and MirrIR etc. These substrates are generally dissimilar to the original in vivo extracellular environment of a given cell line and are often tolerated poorly by cultured cell lines resulting in morphological and functional changes in the cell. The present study demonstrates various correlations between vibrational spectroscopic analyses and biochemical analyses in the evaluation of the interaction of a normal human epithelial keratinocyte cell line (HaCaT) with MirrIR and quartz substrates coated with fibronectin, laminin and gelatin.
View Article and Find Full Text PDF