Publications by authors named "Peter Keizer"

Loss of proper T-cell functioning is a feature of aging that increases the risk of developing chronic diseases. In aged individuals, highly differentiated T cells arise with a reduced expression of CD28 and CD27 and an increased expression of KLRG-1 or CD57. These cells are often referred to as immunosenescent T cells but may still be highly active and contribute to autoimmunity.

View Article and Find Full Text PDF

Heterogeneous accumulation of senescent cells expressing the senescence-associated secretory phenotype (SASP) affects tissue homeostasis which leads to diseases, such as osteoarthritis (OA). In this study, we set out to characterize heterogeneity of cellular senescence within aged articular cartilage and explored the presence of corresponding metabolic profiles in blood that could function as representative biomarkers. Hereto, we set out to perform cluster analyses, using a gene-set of 131 senescence genes (N = 57) in a previously established RNA sequencing dataset of aged articular cartilage and a generated metabolic dataset in overlapping blood samples.

View Article and Find Full Text PDF

An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape.

View Article and Find Full Text PDF

Senescence, the irreversible cell cycle arrest of damaged cells, is accompanied by a deleterious pro-inflammatory senescence-associated secretory phenotype (SASP). Senescence and the SASP are major factors in aging, cancer, and degenerative diseases, and interfere with the expansion of adult cells in vitro, yet little is known about how to counteract their induction and deleterious effects. Paracrine signals are increasingly recognized as important senescence triggers and understanding their regulation and mode of action may provide novel opportunities to reduce senescence-induced inflammation and improve cell-based therapies.

View Article and Find Full Text PDF

With a dismally low median survival of less than two years after diagnosis, Glioblastoma (GBM) is the most lethal type of brain cancer. The standard-of-care of surgical resection, followed by DNA-damaging chemo-/radiotherapy, is often non-curative. In part, this is because individual cells close to the resection border remain alive and eventually undergo renewed proliferation.

View Article and Find Full Text PDF

Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7 Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1 to 4 of September 2020.

View Article and Find Full Text PDF

Senescent cells drive ageing and the associated loss in health and lifespan. Whether this is mediated by systemic signalling remained unclear. Recently, Xu et al.

View Article and Find Full Text PDF

Aging is the prime risk factor for the broad-based development of diseases. Frailty is a phenotypical hallmark of aging and is often used to assess whether the predicted benefits of a therapy outweigh the risks for older patients. Senescent cells form as a consequence of unresolved molecular damage and persistently secrete molecules that can impair tissue function.

View Article and Find Full Text PDF

Kidney transplants from aged donors are more vulnerable to ischemic injury, suffer more from delayed graft function and have a lower graft survival compared to kidneys from younger donors. On a cellular level, aging results in an increase in cells that are in a permanent cell cycle arrest, termed senescence, which secrete a range of pro-inflammatory cytokines and growth factors. Consequently, these senescent cells negatively influence the local milieu by causing inflammaging, and by reducing the regenerative capacity of the kidney.

View Article and Find Full Text PDF

The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored.

View Article and Find Full Text PDF

The potential to reverse aging has long been a tantalizing thought, but has equally been considered mere utopia. Recently, the spotlights have turned to senescent cells as being a culprit for aging. Can these cells be therapeutically eliminated? When so? And is this even safe? Recent developments in the tool box to study senescence have made it possible to begin addressing these questions.

View Article and Find Full Text PDF

Background: Kaposi's sarcoma (KS), an endothelial neoplasm, is associated with human herpes virus (HHV) -8 infection. KS has four clinical sub-types: Mediterranean/classic, African/endemic, human immunodeficiency virus (HIV) -associated/epidemic, and transplantation-related/iatrogenic. Immunosuppression is an important cofactor in KS process.

View Article and Find Full Text PDF

A series of gramicidin S derivatives 4-15 are presented that have four ornithine residues as polar protonated side chains and two central hydrophobic amino acids with unaltered turn regions. These peptides were screened against human erthrocytes and our standard panel of Gram negative- and Gram positive bacteria, including four MRSA strains. Based on the antibacterial- and hemolytic data, peptides 13 and 14 have an improved biological profile compared to the clinically applied topical antibiotic gramicidin S.

View Article and Find Full Text PDF

Cellular senescence suppresses cancer by arresting the proliferation of cells at risk for malignant transformation. Recently, senescent cells were shown to secrete numerous cytokines, growth factors, and proteases that can alter the tissue microenvironment and may promote age-related pathology. To identify small molecules that suppress the senescence-associated secretory phenotype (SASP), we developed a screening protocol using normal human fibroblasts and a library of compounds that are approved for human use.

View Article and Find Full Text PDF

Oncogene-induced senescence (OIS) is a potent tumor-suppressive mechanism that is thought to come at the cost of aging. The Forkhead box O (FOXO) transcription factors are regulators of life span and tumor suppression. However, whether and how FOXOs function in OIS have been unclear.

View Article and Find Full Text PDF

The forkhead box O (FOXO) family of transcription factors regulates a variety of cellular programs, including cell cycle arrest, reactive oxygen species (ROS) scavenging, and apoptosis, and are of key importance in the decision over cell fate. In animal model systems it has been shown that FOXO is involved in the regulation of long lifespan. FOXO activity is tightly controlled by the insulin signaling pathway and by a multitude of ROS-induced posttranslational modifications.

View Article and Find Full Text PDF

In this study, we searched for proteins regulating the tumor suppressor and life-span regulator FOXO4. Through an unbiased tandem-affinity purification strategy combined with mass spectrometry, we identified the heterodimer Ku70/Ku80 (Ku), a DNA double-strand break repair component. Using biochemical interaction studies, we found Ku70 to be necessary and sufficient for the interaction.

View Article and Find Full Text PDF

Cellular damage invoked by reactive oxygen species plays a key role in the pathobiology of cancer and aging. Forkhead box class O (FoxO) transcription factors are involved in various cellular processes including cell cycle regulation, apoptosis and resistance to reactive oxygen species, and studies in animal models have shown that these transcription factors are of vital importance in tumor suppression, stem cell maintenance and lifespan extension. Here we report that the activity of FoxO in human cells is directly regulated by the cellular redox state through a unique mechanism in signal transduction.

View Article and Find Full Text PDF

The Forkhead box O (FOXO) protein family is an evolutionarily conserved subclass of transcription factors recently identified as bona fide tumor suppressors. Preventing the accumulation of cellular damage due to oxidative stress is thought to underlie its tumor-suppressive role. Oxidative stress, in turn, also feedback controls FOXO4 function.

View Article and Find Full Text PDF

Background: The Forkhead box O (FOXO) class of transcription factors are involved in the regulation of several cellular responses including cell cycle progression and apoptosis. Furthermore, in model organisms FOXOs act as tumor suppressors and affect aging. Previously, we noted that FOXOs and p53 are remarkably similar within their spectrum of regulatory proteins.

View Article and Find Full Text PDF

Eps15 and its related protein Eps15R are key components of the clathrin-mediated endocytic pathway. We searched for new binding partners of Eps15 using a yeast two-hybrid screen. We report here that ubiquilin (hPLIC1), a type-2 ubiquitin-like protein containing a ubiquitin-like domain (UBL) and a ubiquitin-associated domain (UBA), interacts with both Eps15 and Eps15R.

View Article and Find Full Text PDF